Cargando…
Assessing deep learning methods in cis-regulatory motif finding based on genomic sequencing data
Identifying cis-regulatory motifs from genomic sequencing data (e.g. ChIP-seq and CLIP-seq) is crucial in identifying transcription factor (TF) binding sites and inferring gene regulatory mechanisms for any organism. Since 2015, deep learning (DL) methods have been widely applied to identify TF bind...
Autores principales: | Zhang, Shuangquan, Ma, Anjun, Zhao, Jing, Xu, Dong, Ma, Qin, Wang, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769700/ https://www.ncbi.nlm.nih.gov/pubmed/34607350 http://dx.doi.org/10.1093/bib/bbab374 |
Ejemplares similares
-
Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework
por: Yang, Jinyu, et al.
Publicado: (2019) -
A new framework for identifying cis-regulatory motifs in prokaryotes
por: Li, Guojun, et al.
Publicado: (2011) -
An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes
por: Liu, Bingqiang, et al.
Publicado: (2016) -
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
por: Li, Yifeng, et al.
Publicado: (2018) -
NeuronMotif: Deciphering cis-regulatory codes by layer-wise demixing of deep neural networks
por: Wei, Zheng, et al.
Publicado: (2023)