Cargando…
Machine learning methods, databases and tools for drug combination prediction
Combination therapy has shown an obvious efficacy on complex diseases and can greatly reduce the development of drug resistance. However, even with high-throughput screens, experimental methods are insufficient to explore novel drug combinations. In order to reduce the search space of drug combinati...
Autores principales: | Wu, Lianlian, Wen, Yuqi, Leng, Dongjin, Zhang, Qinglong, Dai, Chong, Wang, Zhongming, Liu, Ziqi, Yan, Bowei, Zhang, Yixin, Wang, Jing, He, Song, Bo, Xiaochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769702/ https://www.ncbi.nlm.nih.gov/pubmed/34477201 http://dx.doi.org/10.1093/bib/bbab355 |
Ejemplares similares
-
Computational methods, databases and tools for synthetic lethality prediction
por: Wang, Jing, et al.
Publicado: (2022) -
DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning
por: Wang, Zhongming, et al.
Publicado: (2023) -
Multi-dimensional data integration algorithm based on random walk with restart
por: Wen, Yuqi, et al.
Publicado: (2021) -
A benchmark study of deep learning-based multi-omics data fusion methods for cancer
por: Leng, Dongjin, et al.
Publicado: (2022) -
TOXRIC: a comprehensive database of toxicological data and benchmarks
por: Wu, Lianlian, et al.
Publicado: (2022)