Cargando…
Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power
The trade-off between a machine learning (ML) and deep learning (DL) model’s predictability and its interpretability has been a rising concern in central nervous system-related quantitative structure–activity relationship (CNS-QSAR) analysis. Many state-of-the-art predictive modeling failed to provi...
Autores principales: | Yu, Tzu-Hui, Su, Bo-Han, Battalora, Leo Chander, Liu, Sin, Tseng, Yufeng Jane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769704/ https://www.ncbi.nlm.nih.gov/pubmed/34530437 http://dx.doi.org/10.1093/bib/bbab377 |
Ejemplares similares
-
TIGER: technical variation elimination for metabolomics data using ensemble learning architecture
por: Han, Siyu, et al.
Publicado: (2022) -
A general optimization protocol for molecular property prediction using a deep learning network
por: Chen, Jen-Hao, et al.
Publicado: (2021) -
Predicting protein–membrane interfaces of peripheral membrane proteins using ensemble machine learning
por: Chatzigoulas, Alexios, et al.
Publicado: (2022) -
STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction
por: Basith, Shaherin, et al.
Publicado: (2021) -
Inpactor2: a software based on deep learning to identify and classify LTR-retrotransposons in plant genomes
por: Orozco-Arias, Simon, et al.
Publicado: (2022)