Cargando…
MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors
One of the main challenges in applying machine learning algorithms to biological sequence data is how to numerically represent a sequence in a numeric input vector. Feature extraction techniques capable of extracting numerical information from biological sequences have been reported in the literatur...
Autores principales: | Bonidia, Robson P, Domingues, Douglas S, Sanches, Danilo S, de Carvalho, André C P L F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769707/ https://www.ncbi.nlm.nih.gov/pubmed/34750626 http://dx.doi.org/10.1093/bib/bbab434 |
Ejemplares similares
-
BioAutoML: automated feature engineering and metalearning to predict noncoding RNAs in bacteria
por: Bonidia, Robson P, et al.
Publicado: (2022) -
DeepFeature: feature selection in nonimage data using convolutional neural network
por: Sharma, Alok, et al.
Publicado: (2021) -
Fusing 2D and 3D molecular graphs as unambiguous molecular descriptors for conformational and chiral stereoisomers
por: Du, Wenjie, et al.
Publicado: (2022) -
HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data
por: Wang, Jiankang, et al.
Publicado: (2021) -
FLAN: feature-wise latent additive neural models for biological applications
por: Nguyen, An-Phi, et al.
Publicado: (2023)