Cargando…
An enforced block diagonal low-rank representation method for the classification of medical image patterns
Low-rank representation based methods have been used on a variety of medical imaging databases for the segmentation and classification of biomedical images. The subspace segmentation of the data is performed by generating the block diagonal coefficient matrix. Whereas, the data is classified by perf...
Autores principales: | Sheikh, Ishfaq Majeed, Chachoo, Manzoor Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769777/ https://www.ncbi.nlm.nih.gov/pubmed/35075441 http://dx.doi.org/10.1007/s41870-021-00841-5 |
Ejemplares similares
-
Block-Diagonal Constrained Low-Rank and Sparse Graph for Discriminant Analysis of Image Data
por: Guo, Tan, et al.
Publicado: (2017) -
Low rank matrix approximation using the Lanczos bi-diagonalization process
por: Simon, H D, et al.
Publicado: (1997) -
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
por: Gan, Bin, et al.
Publicado: (2014) -
Self-supervised sparse coding scheme for image classification based on low rank representation
por: Li, Ao, et al.
Publicado: (2018) -
Diagonal Limit for Conformal Blocks in d Dimensions
por: Hogervorst, Matthijs, et al.
Publicado: (2013)