Cargando…
Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation
The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increa...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769897/ https://www.ncbi.nlm.nih.gov/pubmed/34962256 http://dx.doi.org/10.1093/bib/bbab507 |
_version_ | 1784635246043463680 |
---|---|
author | Serra, Angela Fratello, Michele Federico, Antonio Ojha, Ravi Provenzani, Riccardo Tasnadi, Ervin Cattelani, Luca del Giudice, Giusy Kinaret, Pia A S Saarimäki, Laura A Pavel, Alisa Kuivanen, Suvi Cerullo, Vincenzo Vapalahti, Olli Horvath, Peter Lieto, Antonio Di Yli-Kauhaluoma, Jari Balistreri, Giuseppe Greco, Dario |
author_facet | Serra, Angela Fratello, Michele Federico, Antonio Ojha, Ravi Provenzani, Riccardo Tasnadi, Ervin Cattelani, Luca del Giudice, Giusy Kinaret, Pia A S Saarimäki, Laura A Pavel, Alisa Kuivanen, Suvi Cerullo, Vincenzo Vapalahti, Olli Horvath, Peter Lieto, Antonio Di Yli-Kauhaluoma, Jari Balistreri, Giuseppe Greco, Dario |
author_sort | Serra, Angela |
collection | PubMed |
description | The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs. |
format | Online Article Text |
id | pubmed-8769897 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-87698972022-01-20 Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation Serra, Angela Fratello, Michele Federico, Antonio Ojha, Ravi Provenzani, Riccardo Tasnadi, Ervin Cattelani, Luca del Giudice, Giusy Kinaret, Pia A S Saarimäki, Laura A Pavel, Alisa Kuivanen, Suvi Cerullo, Vincenzo Vapalahti, Olli Horvath, Peter Lieto, Antonio Di Yli-Kauhaluoma, Jari Balistreri, Giuseppe Greco, Dario Brief Bioinform Case Study The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs. Oxford University Press 2021-12-27 /pmc/articles/PMC8769897/ /pubmed/34962256 http://dx.doi.org/10.1093/bib/bbab507 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Case Study Serra, Angela Fratello, Michele Federico, Antonio Ojha, Ravi Provenzani, Riccardo Tasnadi, Ervin Cattelani, Luca del Giudice, Giusy Kinaret, Pia A S Saarimäki, Laura A Pavel, Alisa Kuivanen, Suvi Cerullo, Vincenzo Vapalahti, Olli Horvath, Peter Lieto, Antonio Di Yli-Kauhaluoma, Jari Balistreri, Giuseppe Greco, Dario Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation |
title | Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation |
title_full | Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation |
title_fullStr | Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation |
title_full_unstemmed | Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation |
title_short | Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation |
title_sort | computationally prioritized drugs inhibit sars-cov-2 infection and syncytia formation |
topic | Case Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769897/ https://www.ncbi.nlm.nih.gov/pubmed/34962256 http://dx.doi.org/10.1093/bib/bbab507 |
work_keys_str_mv | AT serraangela computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT fratellomichele computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT federicoantonio computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT ojharavi computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT provenzaniriccardo computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT tasnadiervin computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT cattelaniluca computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT delgiudicegiusy computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT kinaretpiaas computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT saarimakilauraa computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT pavelalisa computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT kuivanensuvi computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT cerullovincenzo computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT vapalahtiolli computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT horvathpeter computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT lietoantoniodi computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT ylikauhaluomajari computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT balistrerigiuseppe computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation AT grecodario computationallyprioritizeddrugsinhibitsarscov2infectionandsyncytiaformation |