Cargando…
Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT
With coronavirus disease 2019 (COVID-19) cases rising rapidly, deep learning has emerged as a promising diagnosis technique. However, identifying the most accurate models to characterize COVID-19 patients is challenging because comparing results obtained with different types of data and acquisition...
Autores principales: | Garg, Aksh, Salehi, Sana, Rocca, Marianna La, Garner, Rachael, Duncan, Dominique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769906/ https://www.ncbi.nlm.nih.gov/pubmed/35075334 http://dx.doi.org/10.1016/j.eswa.2022.116540 |
Ejemplares similares
-
Visualizable vs. non-visualizable steerable sheaths for AF procedures: randomized tiral
por: Kupo, P, et al.
Publicado: (2023) -
Association between ABO blood types and coronavirus disease 2019 (COVID-19), genetic associations, and underlying molecular mechanisms: a literature review of 23 studies
por: Zhang, Yujia, et al.
Publicado: (2021) -
A Novel Threshold-Based Segmentation Method for Quantification of COVID-19 Lung Abnormalities
por: Khan, Azrin, et al.
Publicado: (2022) -
Molecular and antigen tests, and sample types for diagnosis of COVID-19: a review
por: Zhang, Yujia, et al.
Publicado: (2022) -
Visualizable vs. standard, non-visualizable steerable sheath for pulmonary vein isolation procedures: Randomized, single-centre trial
por: Janosi, Kristof, et al.
Publicado: (2022)