Cargando…

BML: a versatile web server for bipartite motif discovery

Motif discovery and characterization are important for gene regulation analysis. The lack of intuitive and integrative web servers impedes the effective use of motifs. Most motif discovery web tools are either not designed for non-expert users or lacking optimization steps when using default setting...

Descripción completa

Detalles Bibliográficos
Autores principales: Vahed, Mohammad, Vahed, Majid, Garmire, Lana X
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769915/
https://www.ncbi.nlm.nih.gov/pubmed/34974623
http://dx.doi.org/10.1093/bib/bbab536
_version_ 1784635249455529984
author Vahed, Mohammad
Vahed, Majid
Garmire, Lana X
author_facet Vahed, Mohammad
Vahed, Majid
Garmire, Lana X
author_sort Vahed, Mohammad
collection PubMed
description Motif discovery and characterization are important for gene regulation analysis. The lack of intuitive and integrative web servers impedes the effective use of motifs. Most motif discovery web tools are either not designed for non-expert users or lacking optimization steps when using default settings. Here we describe bipartite motifs learning (BML), a parameter-free web server that provides a user-friendly portal for online discovery and analysis of sequence motifs, using high-throughput sequencing data as the input. BML utilizes both position weight matrix and dinucleotide weight matrix, the latter of which enables the expression of the interdependencies of neighboring bases. With input parameters concerning the motifs are given, the BML achieves significantly higher accuracy than other available tools for motif finding. When no parameters are given by non-expert users, unlike other tools, BML employs a learning method to identify motifs automatically and achieve accuracy comparable to the scenario where the parameters are set. The BML web server is freely available at http://motif.t-ridership.com/ (https://github.com/Mohammad-Vahed/BML).
format Online
Article
Text
id pubmed-8769915
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-87699152022-01-20 BML: a versatile web server for bipartite motif discovery Vahed, Mohammad Vahed, Majid Garmire, Lana X Brief Bioinform Problem Solving Protocol Motif discovery and characterization are important for gene regulation analysis. The lack of intuitive and integrative web servers impedes the effective use of motifs. Most motif discovery web tools are either not designed for non-expert users or lacking optimization steps when using default settings. Here we describe bipartite motifs learning (BML), a parameter-free web server that provides a user-friendly portal for online discovery and analysis of sequence motifs, using high-throughput sequencing data as the input. BML utilizes both position weight matrix and dinucleotide weight matrix, the latter of which enables the expression of the interdependencies of neighboring bases. With input parameters concerning the motifs are given, the BML achieves significantly higher accuracy than other available tools for motif finding. When no parameters are given by non-expert users, unlike other tools, BML employs a learning method to identify motifs automatically and achieve accuracy comparable to the scenario where the parameters are set. The BML web server is freely available at http://motif.t-ridership.com/ (https://github.com/Mohammad-Vahed/BML). Oxford University Press 2021-12-31 /pmc/articles/PMC8769915/ /pubmed/34974623 http://dx.doi.org/10.1093/bib/bbab536 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Problem Solving Protocol
Vahed, Mohammad
Vahed, Majid
Garmire, Lana X
BML: a versatile web server for bipartite motif discovery
title BML: a versatile web server for bipartite motif discovery
title_full BML: a versatile web server for bipartite motif discovery
title_fullStr BML: a versatile web server for bipartite motif discovery
title_full_unstemmed BML: a versatile web server for bipartite motif discovery
title_short BML: a versatile web server for bipartite motif discovery
title_sort bml: a versatile web server for bipartite motif discovery
topic Problem Solving Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769915/
https://www.ncbi.nlm.nih.gov/pubmed/34974623
http://dx.doi.org/10.1093/bib/bbab536
work_keys_str_mv AT vahedmohammad bmlaversatilewebserverforbipartitemotifdiscovery
AT vahedmajid bmlaversatilewebserverforbipartitemotifdiscovery
AT garmirelanax bmlaversatilewebserverforbipartitemotifdiscovery