Cargando…
SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging
High-throughput single-cell RNA-seq data have provided unprecedented opportunities for deciphering the regulatory interactions among genes. However, such interactions are complex and often nonlinear or nonmonotonic, which makes their inference using linear models challenging. We present SIGNET, a de...
Autores principales: | Luo, Qinhuan, Yu, Yongzhen, Lan, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769917/ https://www.ncbi.nlm.nih.gov/pubmed/34962260 http://dx.doi.org/10.1093/bib/bbab547 |
Ejemplares similares
-
Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks
por: Mao, Guo, et al.
Publicado: (2023) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021) -
Joint reconstruction of cis-regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data
por: Dong, Kangning, et al.
Publicado: (2020) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks
por: Suter, Polina, et al.
Publicado: (2022)