Cargando…
HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data
Eukaryotic genomes are organized in a three-dimensional spatial structure. In this regard, the development of chromosome conformation capture methods has enabled studies of chromosome organization on a genomic scale. Hi-C, the high-throughput chromosome conformation capture method, can reveal a popu...
Autores principales: | Wang, Jiankang, Nakato, Ryuichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769930/ https://www.ncbi.nlm.nih.gov/pubmed/34850813 http://dx.doi.org/10.1093/bib/bbab509 |
Ejemplares similares
-
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023) -
HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases
por: Kobets, Victoria A, et al.
Publicado: (2023) -
scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
por: Zhu, Hao, et al.
Publicado: (2023) -
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023) -
Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data
por: Lu, Jingzhe, et al.
Publicado: (2021)