Cargando…
Chemical crystallography by serial femtosecond X-ray diffraction
Inorganic–organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties(1). This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe r...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770144/ https://www.ncbi.nlm.nih.gov/pubmed/35046599 http://dx.doi.org/10.1038/s41586-021-04218-3 |
_version_ | 1784635301825609728 |
---|---|
author | Schriber, Elyse A. Paley, Daniel W. Bolotovsky, Robert Rosenberg, Daniel J. Sierra, Raymond G. Aquila, Andrew Mendez, Derek Poitevin, Frédéric Blaschke, Johannes P. Bhowmick, Asmit Kelly, Ryan P. Hunter, Mark Hayes, Brandon Popple, Derek C. Yeung, Matthew Pareja-Rivera, Carina Lisova, Stella Tono, Kensuke Sugahara, Michihiro Owada, Shigeki Kuykendall, Tevye Yao, Kaiyuan Schuck, P. James Solis-Ibarra, Diego Sauter, Nicholas K. Brewster, Aaron S. Hohman, J. Nathan |
author_facet | Schriber, Elyse A. Paley, Daniel W. Bolotovsky, Robert Rosenberg, Daniel J. Sierra, Raymond G. Aquila, Andrew Mendez, Derek Poitevin, Frédéric Blaschke, Johannes P. Bhowmick, Asmit Kelly, Ryan P. Hunter, Mark Hayes, Brandon Popple, Derek C. Yeung, Matthew Pareja-Rivera, Carina Lisova, Stella Tono, Kensuke Sugahara, Michihiro Owada, Shigeki Kuykendall, Tevye Yao, Kaiyuan Schuck, P. James Solis-Ibarra, Diego Sauter, Nicholas K. Brewster, Aaron S. Hohman, J. Nathan |
author_sort | Schriber, Elyse A. |
collection | PubMed |
description | Inorganic–organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties(1). This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction(2,3) and electron microdiffraction(4–11). Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation(12,13) and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach(14), the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data(15–17). We describe the ab initio structure solutions of mithrene (AgSePh)(18–20), thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver–silver bonding network that is linked to its divergent optoelectronic properties(20). We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure. |
format | Online Article Text |
id | pubmed-8770144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-87701442022-02-04 Chemical crystallography by serial femtosecond X-ray diffraction Schriber, Elyse A. Paley, Daniel W. Bolotovsky, Robert Rosenberg, Daniel J. Sierra, Raymond G. Aquila, Andrew Mendez, Derek Poitevin, Frédéric Blaschke, Johannes P. Bhowmick, Asmit Kelly, Ryan P. Hunter, Mark Hayes, Brandon Popple, Derek C. Yeung, Matthew Pareja-Rivera, Carina Lisova, Stella Tono, Kensuke Sugahara, Michihiro Owada, Shigeki Kuykendall, Tevye Yao, Kaiyuan Schuck, P. James Solis-Ibarra, Diego Sauter, Nicholas K. Brewster, Aaron S. Hohman, J. Nathan Nature Article Inorganic–organic hybrid materials represent a large share of newly reported structures, owing to their simple synthetic routes and customizable properties(1). This proliferation has led to a characterization bottleneck: many hybrid materials are obligate microcrystals with low symmetry and severe radiation sensitivity, interfering with the standard techniques of single-crystal X-ray diffraction(2,3) and electron microdiffraction(4–11). Here we demonstrate small-molecule serial femtosecond X-ray crystallography (smSFX) for the determination of material crystal structures from microcrystals. We subjected microcrystalline suspensions to X-ray free-electron laser radiation(12,13) and obtained thousands of randomly oriented diffraction patterns. We determined unit cells by aggregating spot-finding results into high-resolution powder diffractograms. After indexing the sparse serial patterns by a graph theory approach(14), the resulting datasets can be solved and refined using standard tools for single-crystal diffraction data(15–17). We describe the ab initio structure solutions of mithrene (AgSePh)(18–20), thiorene (AgSPh) and tethrene (AgTePh), of which the latter two were previously unknown structures. In thiorene, we identify a geometric change in the silver–silver bonding network that is linked to its divergent optoelectronic properties(20). We demonstrate that smSFX can be applied as a general technique for structure determination of beam-sensitive microcrystalline materials at near-ambient temperature and pressure. Nature Publishing Group UK 2022-01-19 2022 /pmc/articles/PMC8770144/ /pubmed/35046599 http://dx.doi.org/10.1038/s41586-021-04218-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Schriber, Elyse A. Paley, Daniel W. Bolotovsky, Robert Rosenberg, Daniel J. Sierra, Raymond G. Aquila, Andrew Mendez, Derek Poitevin, Frédéric Blaschke, Johannes P. Bhowmick, Asmit Kelly, Ryan P. Hunter, Mark Hayes, Brandon Popple, Derek C. Yeung, Matthew Pareja-Rivera, Carina Lisova, Stella Tono, Kensuke Sugahara, Michihiro Owada, Shigeki Kuykendall, Tevye Yao, Kaiyuan Schuck, P. James Solis-Ibarra, Diego Sauter, Nicholas K. Brewster, Aaron S. Hohman, J. Nathan Chemical crystallography by serial femtosecond X-ray diffraction |
title | Chemical crystallography by serial femtosecond X-ray diffraction |
title_full | Chemical crystallography by serial femtosecond X-ray diffraction |
title_fullStr | Chemical crystallography by serial femtosecond X-ray diffraction |
title_full_unstemmed | Chemical crystallography by serial femtosecond X-ray diffraction |
title_short | Chemical crystallography by serial femtosecond X-ray diffraction |
title_sort | chemical crystallography by serial femtosecond x-ray diffraction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770144/ https://www.ncbi.nlm.nih.gov/pubmed/35046599 http://dx.doi.org/10.1038/s41586-021-04218-3 |
work_keys_str_mv | AT schriberelysea chemicalcrystallographybyserialfemtosecondxraydiffraction AT paleydanielw chemicalcrystallographybyserialfemtosecondxraydiffraction AT bolotovskyrobert chemicalcrystallographybyserialfemtosecondxraydiffraction AT rosenbergdanielj chemicalcrystallographybyserialfemtosecondxraydiffraction AT sierraraymondg chemicalcrystallographybyserialfemtosecondxraydiffraction AT aquilaandrew chemicalcrystallographybyserialfemtosecondxraydiffraction AT mendezderek chemicalcrystallographybyserialfemtosecondxraydiffraction AT poitevinfrederic chemicalcrystallographybyserialfemtosecondxraydiffraction AT blaschkejohannesp chemicalcrystallographybyserialfemtosecondxraydiffraction AT bhowmickasmit chemicalcrystallographybyserialfemtosecondxraydiffraction AT kellyryanp chemicalcrystallographybyserialfemtosecondxraydiffraction AT huntermark chemicalcrystallographybyserialfemtosecondxraydiffraction AT hayesbrandon chemicalcrystallographybyserialfemtosecondxraydiffraction AT popplederekc chemicalcrystallographybyserialfemtosecondxraydiffraction AT yeungmatthew chemicalcrystallographybyserialfemtosecondxraydiffraction AT parejariveracarina chemicalcrystallographybyserialfemtosecondxraydiffraction AT lisovastella chemicalcrystallographybyserialfemtosecondxraydiffraction AT tonokensuke chemicalcrystallographybyserialfemtosecondxraydiffraction AT sugaharamichihiro chemicalcrystallographybyserialfemtosecondxraydiffraction AT owadashigeki chemicalcrystallographybyserialfemtosecondxraydiffraction AT kuykendalltevye chemicalcrystallographybyserialfemtosecondxraydiffraction AT yaokaiyuan chemicalcrystallographybyserialfemtosecondxraydiffraction AT schuckpjames chemicalcrystallographybyserialfemtosecondxraydiffraction AT solisibarradiego chemicalcrystallographybyserialfemtosecondxraydiffraction AT sauternicholask chemicalcrystallographybyserialfemtosecondxraydiffraction AT brewsteraarons chemicalcrystallographybyserialfemtosecondxraydiffraction AT hohmanjnathan chemicalcrystallographybyserialfemtosecondxraydiffraction |