Cargando…
Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He
We consider the possibility of the scenario in which the P, T and Lorentz symmetry of the relativistic quantum vacuum are all the combined symmetries. These symmetries emerge as a result of the symmetry breaking of the more fundamental P, T and Lorentz symmetries of the original vacuum, which is inv...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770376/ https://www.ncbi.nlm.nih.gov/pubmed/35125513 http://dx.doi.org/10.1007/s10909-021-02630-7 |
_version_ | 1784635357450469376 |
---|---|
author | Volovik, G. E. |
author_facet | Volovik, G. E. |
author_sort | Volovik, G. E. |
collection | PubMed |
description | We consider the possibility of the scenario in which the P, T and Lorentz symmetry of the relativistic quantum vacuum are all the combined symmetries. These symmetries emerge as a result of the symmetry breaking of the more fundamental P, T and Lorentz symmetries of the original vacuum, which is invariant under separate groups of the coordinate transformations and spin rotations. The condensed matter vacua (ground states) suggest two possible scenarios of the origin of the combined Lorentz symmetry, and both are realized in the superfluid phases of liquid [Formula: see text] He: the [Formula: see text] He-A scenario and the [Formula: see text] He-B scenario. In these scenarios, the gravitational tetrads are considered as the order parameter of the symmetry breaking in the quantum vacuum. The [Formula: see text] He-B scenarios applied to the Minkowski vacuum lead to the continuous degeneracy of the Minkowski vacuum with respect to the O(3, 1) spin rotations. The symmetry breaking leads to the corresponding topological objects, which appear due to the nontrivial topology of the manifold of the degenerate Minkowski vacua, such as torsion strings. The fourfold degeneracy of the Minkowski vacuum with respect to discrete P and T symmetries suggests that the Weyl fermions are described by four different tetrad fields: the tetrad for the left-handed fermions, the tetrad for the right-handed fermions, and the tetrads for their antiparticles. This may lead to the gravity with several metric fields, so that the parity violation may lead to the breaking of equivalence principle. Finally, we considered the application of the gravitational tetrads for the solution of the cosmological constant problem. |
format | Online Article Text |
id | pubmed-8770376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-87703762022-02-02 Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He Volovik, G. E. J Low Temp Phys Article We consider the possibility of the scenario in which the P, T and Lorentz symmetry of the relativistic quantum vacuum are all the combined symmetries. These symmetries emerge as a result of the symmetry breaking of the more fundamental P, T and Lorentz symmetries of the original vacuum, which is invariant under separate groups of the coordinate transformations and spin rotations. The condensed matter vacua (ground states) suggest two possible scenarios of the origin of the combined Lorentz symmetry, and both are realized in the superfluid phases of liquid [Formula: see text] He: the [Formula: see text] He-A scenario and the [Formula: see text] He-B scenario. In these scenarios, the gravitational tetrads are considered as the order parameter of the symmetry breaking in the quantum vacuum. The [Formula: see text] He-B scenarios applied to the Minkowski vacuum lead to the continuous degeneracy of the Minkowski vacuum with respect to the O(3, 1) spin rotations. The symmetry breaking leads to the corresponding topological objects, which appear due to the nontrivial topology of the manifold of the degenerate Minkowski vacua, such as torsion strings. The fourfold degeneracy of the Minkowski vacuum with respect to discrete P and T symmetries suggests that the Weyl fermions are described by four different tetrad fields: the tetrad for the left-handed fermions, the tetrad for the right-handed fermions, and the tetrads for their antiparticles. This may lead to the gravity with several metric fields, so that the parity violation may lead to the breaking of equivalence principle. Finally, we considered the application of the gravitational tetrads for the solution of the cosmological constant problem. Springer US 2021-10-29 2022 /pmc/articles/PMC8770376/ /pubmed/35125513 http://dx.doi.org/10.1007/s10909-021-02630-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Volovik, G. E. Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He |
title | Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He |
title_full | Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He |
title_fullStr | Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He |
title_full_unstemmed | Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He |
title_short | Combined Lorentz Symmetry: Lessons from Superfluid [Formula: see text] He |
title_sort | combined lorentz symmetry: lessons from superfluid [formula: see text] he |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770376/ https://www.ncbi.nlm.nih.gov/pubmed/35125513 http://dx.doi.org/10.1007/s10909-021-02630-7 |
work_keys_str_mv | AT volovikge combinedlorentzsymmetrylessonsfromsuperfluidformulaseetexthe |