Cargando…
Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs
The ability to generate lower-noise microwaves has greatly advanced high-speed, high-precision scientific and engineering fields. Microcombs have high potential for generating such low-noise microwaves from chip-scale devices. To realize an ultralow-noise performance over a wider Fourier frequency r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770478/ https://www.ncbi.nlm.nih.gov/pubmed/35046409 http://dx.doi.org/10.1038/s41467-022-27992-8 |
Sumario: | The ability to generate lower-noise microwaves has greatly advanced high-speed, high-precision scientific and engineering fields. Microcombs have high potential for generating such low-noise microwaves from chip-scale devices. To realize an ultralow-noise performance over a wider Fourier frequency range and longer time scale, which is required for many high-precision applications, free-running microcombs must be locked to more stable reference sources. However, ultrastable reference sources, particularly optical cavity-based methods, are generally bulky, alignment-sensitive and expensive, and therefore forfeit the benefits of using chip-scale microcombs. Here, we realize compact and low-phase-noise microwave and soliton pulse generation by combining a silica-microcomb (with few-mm diameter) with a fibre-photonic-based timing reference (with few-cm diameter). An ultrastable 22-GHz microwave is generated with −110 dBc/Hz (−88 dBc/Hz) phase noise at 1-kHz (100-Hz) Fourier frequency and 10(−13)-level frequency instability within 1-s. This work shows the potential of fully packaged, palm-sized or smaller systems for generating both ultrastable soliton pulse trains and microwaves, thereby facilitating a wide range of field applications involving ultrahigh-stability microcombs. |
---|