Cargando…
Self-directed online machine learning for topology optimization
Topology optimization by optimally distributing materials in a given domain requires non-gradient optimizers to solve highly complicated problems. However, with hundreds of design variables or more involved, solving such problems would require millions of Finite Element Method (FEM) calculations who...
Autores principales: | Deng, Changyu, Wang, Yizhou, Qin, Can, Fu, Yun, Lu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770634/ https://www.ncbi.nlm.nih.gov/pubmed/35046415 http://dx.doi.org/10.1038/s41467-021-27713-7 |
Ejemplares similares
-
Integrating Machine Learning with Human Knowledge
por: Deng, Changyu, et al.
Publicado: (2020) -
A generic battery-cycling optimization framework with learned sampling and early stopping strategies
por: Deng, Changyu, et al.
Publicado: (2022) -
Geometry Optimization with Machine Trained Topological Atoms
por: Zielinski, François, et al.
Publicado: (2017) -
Self-directed Learning Predicts Online Learning Engagement in Higher Education Mediated by Perceived Value of Knowing Learning Goals
por: Sun, Wei, et al.
Publicado: (2022) -
Fast machine-learning online optimization of ultra-cold-atom experiments
por: Wigley, P. B., et al.
Publicado: (2016)