Cargando…
Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data
Mapping cell types across a tissue is a central concern of spatial biology, but cell type abundance is difficult to extract from spatial gene expression data. We introduce SpatialDecon, an algorithm for quantifying cell populations defined by single cell sequencing within the regions of spatial gene...
Autores principales: | Danaher, Patrick, Kim, Youngmi, Nelson, Brenn, Griswold, Maddy, Yang, Zhi, Piazza, Erin, Beechem, Joseph M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770643/ https://www.ncbi.nlm.nih.gov/pubmed/35046414 http://dx.doi.org/10.1038/s41467-022-28020-5 |
Ejemplares similares
-
SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics
por: Liu, Zhiyuan, et al.
Publicado: (2023) -
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
An information theoretic approach to detecting spatially varying genes
por: Jones, Daniel C., et al.
Publicado: (2023) -
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
por: Zhang, Yingkun, et al.
Publicado: (2022) -
Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
por: Zhou, Zixiang, et al.
Publicado: (2023)