Cargando…
Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom
BACKGROUND: Augmented Reality (AR) represents an evolution of navigation-assisted surgery, providing surgeons with a virtual aid contextually merged with the real surgical field. We recently reported a case series of AR-assisted fibular flap harvesting for mandibular reconstruction. However, the reg...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770836/ https://www.ncbi.nlm.nih.gov/pubmed/35071009 http://dx.doi.org/10.3389/fonc.2021.804748 |
_version_ | 1784635456976060416 |
---|---|
author | Cercenelli, Laura Babini, Federico Badiali, Giovanni Battaglia, Salvatore Tarsitano, Achille Marchetti, Claudio Marcelli, Emanuela |
author_facet | Cercenelli, Laura Babini, Federico Badiali, Giovanni Battaglia, Salvatore Tarsitano, Achille Marchetti, Claudio Marcelli, Emanuela |
author_sort | Cercenelli, Laura |
collection | PubMed |
description | BACKGROUND: Augmented Reality (AR) represents an evolution of navigation-assisted surgery, providing surgeons with a virtual aid contextually merged with the real surgical field. We recently reported a case series of AR-assisted fibular flap harvesting for mandibular reconstruction. However, the registration accuracy between the real and the virtual content needs to be systematically evaluated before widely promoting this tool in clinical practice. In this paper, after description of the AR based protocol implemented for both tablet and HoloLens 2 smart glasses, we evaluated in a first test session the achievable registration accuracy with the two display solutions, and in a second test session the success rate in executing the AR-guided skin paddle incision task on a 3D printed leg phantom. METHODS: From a real computed tomography dataset, 3D virtual models of a human leg, including fibula, arteries and skin with planned paddle profile for harvesting, were obtained. All virtual models were imported into Unity software to develop a marker-less AR application suitable to be used both via tablet and via HoloLens 2 headset. The registration accuracy for both solutions was verified on a 3D printed leg phantom obtained from the virtual models, by repeatedly applying the tracking function and computing pose deviations between the AR-projected virtual skin paddle profile and the real one transferred to the phantom via a CAD/CAM cutting guide. The success rate in completing the AR-guided task of skin paddle harvesting was evaluated using CAD/CAM templates positioned on the phantom model surface. RESULTS: On average, the marker-less AR protocol showed comparable registration errors (ranging within 1-5 mm) for tablet-based and HoloLens-based solution. Registration accuracy seems to be quite sensitive to ambient light conditions. We found a good success rate in completing the AR-guided task within an error margin of 4 mm (97% and 100% for tablet and HoloLens, respectively). All subjects reported greater usability and ergonomics for HoloLens 2 solution. CONCLUSIONS: Results revealed that the proposed marker-less AR based protocol may guarantee a registration error within 1-5 mm for assisting skin paddle harvesting in the clinical setting. Optimal lightening conditions and further improvement of marker-less tracking technologies have the potential to increase the efficiency and precision of this AR-assisted reconstructive surgery. |
format | Online Article Text |
id | pubmed-8770836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87708362022-01-21 Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom Cercenelli, Laura Babini, Federico Badiali, Giovanni Battaglia, Salvatore Tarsitano, Achille Marchetti, Claudio Marcelli, Emanuela Front Oncol Oncology BACKGROUND: Augmented Reality (AR) represents an evolution of navigation-assisted surgery, providing surgeons with a virtual aid contextually merged with the real surgical field. We recently reported a case series of AR-assisted fibular flap harvesting for mandibular reconstruction. However, the registration accuracy between the real and the virtual content needs to be systematically evaluated before widely promoting this tool in clinical practice. In this paper, after description of the AR based protocol implemented for both tablet and HoloLens 2 smart glasses, we evaluated in a first test session the achievable registration accuracy with the two display solutions, and in a second test session the success rate in executing the AR-guided skin paddle incision task on a 3D printed leg phantom. METHODS: From a real computed tomography dataset, 3D virtual models of a human leg, including fibula, arteries and skin with planned paddle profile for harvesting, were obtained. All virtual models were imported into Unity software to develop a marker-less AR application suitable to be used both via tablet and via HoloLens 2 headset. The registration accuracy for both solutions was verified on a 3D printed leg phantom obtained from the virtual models, by repeatedly applying the tracking function and computing pose deviations between the AR-projected virtual skin paddle profile and the real one transferred to the phantom via a CAD/CAM cutting guide. The success rate in completing the AR-guided task of skin paddle harvesting was evaluated using CAD/CAM templates positioned on the phantom model surface. RESULTS: On average, the marker-less AR protocol showed comparable registration errors (ranging within 1-5 mm) for tablet-based and HoloLens-based solution. Registration accuracy seems to be quite sensitive to ambient light conditions. We found a good success rate in completing the AR-guided task within an error margin of 4 mm (97% and 100% for tablet and HoloLens, respectively). All subjects reported greater usability and ergonomics for HoloLens 2 solution. CONCLUSIONS: Results revealed that the proposed marker-less AR based protocol may guarantee a registration error within 1-5 mm for assisting skin paddle harvesting in the clinical setting. Optimal lightening conditions and further improvement of marker-less tracking technologies have the potential to increase the efficiency and precision of this AR-assisted reconstructive surgery. Frontiers Media S.A. 2022-01-06 /pmc/articles/PMC8770836/ /pubmed/35071009 http://dx.doi.org/10.3389/fonc.2021.804748 Text en Copyright © 2022 Cercenelli, Babini, Badiali, Battaglia, Tarsitano, Marchetti and Marcelli https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Cercenelli, Laura Babini, Federico Badiali, Giovanni Battaglia, Salvatore Tarsitano, Achille Marchetti, Claudio Marcelli, Emanuela Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom |
title | Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom |
title_full | Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom |
title_fullStr | Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom |
title_full_unstemmed | Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom |
title_short | Augmented Reality to Assist Skin Paddle Harvesting in Osteomyocutaneous Fibular Flap Reconstructive Surgery: A Pilot Evaluation on a 3D-Printed Leg Phantom |
title_sort | augmented reality to assist skin paddle harvesting in osteomyocutaneous fibular flap reconstructive surgery: a pilot evaluation on a 3d-printed leg phantom |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770836/ https://www.ncbi.nlm.nih.gov/pubmed/35071009 http://dx.doi.org/10.3389/fonc.2021.804748 |
work_keys_str_mv | AT cercenellilaura augmentedrealitytoassistskinpaddleharvestinginosteomyocutaneousfibularflapreconstructivesurgeryapilotevaluationona3dprintedlegphantom AT babinifederico augmentedrealitytoassistskinpaddleharvestinginosteomyocutaneousfibularflapreconstructivesurgeryapilotevaluationona3dprintedlegphantom AT badialigiovanni augmentedrealitytoassistskinpaddleharvestinginosteomyocutaneousfibularflapreconstructivesurgeryapilotevaluationona3dprintedlegphantom AT battagliasalvatore augmentedrealitytoassistskinpaddleharvestinginosteomyocutaneousfibularflapreconstructivesurgeryapilotevaluationona3dprintedlegphantom AT tarsitanoachille augmentedrealitytoassistskinpaddleharvestinginosteomyocutaneousfibularflapreconstructivesurgeryapilotevaluationona3dprintedlegphantom AT marchetticlaudio augmentedrealitytoassistskinpaddleharvestinginosteomyocutaneousfibularflapreconstructivesurgeryapilotevaluationona3dprintedlegphantom AT marcelliemanuela augmentedrealitytoassistskinpaddleharvestinginosteomyocutaneousfibularflapreconstructivesurgeryapilotevaluationona3dprintedlegphantom |