Cargando…
Impact of Asymmetric Weight Update on Neural Network Training With Tiki-Taka Algorithm
Recent progress in novel non-volatile memory-based synaptic device technologies and their feasibility for matrix-vector multiplication (MVM) has ignited active research on implementing analog neural network training accelerators with resistive crosspoint arrays. While significant performance boost a...
Autores principales: | Lee, Chaeun, Noh, Kyungmi, Ji, Wonjae, Gokmen, Tayfun, Kim, Seyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770851/ https://www.ncbi.nlm.nih.gov/pubmed/35069098 http://dx.doi.org/10.3389/fnins.2021.767953 |
Ejemplares similares
-
Device‐Algorithm Co‐Optimization for an On‐Chip Trainable Capacitor‐Based Synaptic Device with IGZO TFT and Retention‐Centric Tiki‐Taka Algorithm
por: Won, Jongun, et al.
Publicado: (2023) -
Algorithm for Training Neural Networks on Resistive Device Arrays
por: Gokmen, Tayfun, et al.
Publicado: (2020) -
Taka Diastase
por: Lascar, Ferdinand
Publicado: (1895) -
Neural Network Training With Asymmetric Crosspoint Elements
por: Onen, Murat, et al.
Publicado: (2022) -
Takaful Investment Portfolios: A Study of the Composition of Takaful Funds in the GCC and Malaysia
por: Asutay, Mehmet
Publicado: (2013)