Cargando…
Prediction and Modeling of Neuropsychological Scores in Alzheimer’s Disease Using Multimodal Neuroimaging Data and Artificial Neural Networks
Background: In recent years, predicting and modeling the progression of Alzheimer’s disease (AD) based on neuropsychological tests has become increasingly appealing in AD research. Objective: In this study, we aimed to predict the neuropsychological scores and investigate the non-linear progression...
Autores principales: | Hojjati, Seyed Hani, Babajani-Feremi, Abbas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770936/ https://www.ncbi.nlm.nih.gov/pubmed/35069161 http://dx.doi.org/10.3389/fncom.2021.769982 |
Ejemplares similares
-
Identification of the Early Stage of Alzheimer's Disease Using Structural MRI and Resting-State fMRI
por: Hojjati, Seyed Hani, et al.
Publicado: (2019) -
Lateralization of epilepsy using intra‐hemispheric brain networks based on resting‐state MEG data
por: Pourmotabbed, Haatef, et al.
Publicado: (2020) -
Characterizing resting‐state networks in Parkinson’s disease: A multi‐aspect functional connectivity study
por: Ghasemi, Mahdieh, et al.
Publicado: (2021) -
The Representation of Object Distance: Evidence from Neuroimaging and Neuropsychology
por: Berryhill, Marian E., et al.
Publicado: (2009) -
Pypes: Workflows for Processing Multimodal Neuroimaging Data
por: Savio, Alexandre M., et al.
Publicado: (2017)