Cargando…
Iterative Algorithm for Time Series Decomposition into Trend and Seasonality: Testing Using the Example of CO(2) Concentrations in the Atmosphere
An iterative algorithm for the decomposition of data series into trend and residual (including the seasonal effect) components is proposed. This algorithm is based on the approaches proposed by the authors in several previous studies and allows unbiased estimates for the trend and seasonal component...
Autores principales: | Deshcherevskii, A. V., Sidorin, A. Ya. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pleiades Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771177/ http://dx.doi.org/10.1134/S0001433821080028 |
Ejemplares similares
-
Time series decomposition into dyslipidemia prevalence among urban Chinese population: secular and seasonal trends
por: Lao, Jiahui, et al.
Publicado: (2021) -
Prediction of PM2.5 time series by seasonal trend decomposition-based dendritic neuron model
por: Yuan, Zijing, et al.
Publicado: (2023) -
On domain decomposition and subdomain iteration
por: Bjørhus, M
Publicado: (1995) -
Evaluating trends and seasonality in modeled PM(2.5) concentrations using empirical mode decomposition
por: Luo, Huiying, et al.
Publicado: (2020) -
An example on the Mann iteration method for Lipschitz pseudocontractions
por: Mutangadura, S A, et al.
Publicado: (2000)