Cargando…
Identifying perinatal self-harm in electronic healthcare records using natural language processing
AIMS: 1.To generate a Natural Language Processing (NLP) application that can identify mentions of perinatal self-harm among electronic healthcare records (EHRs) 2.To use this application to estimate the prevalence of perinatal self-harm within a data-linkage cohort of women accessing secondary menta...
Autores principales: | Ayre, Karyn, Bittar, Andre, Dutta, Rina, Verma, Somain, Kam, Joyce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771246/ http://dx.doi.org/10.1192/bjo.2021.74 |
Ejemplares similares
-
Developing a Natural Language Processing tool to identify perinatal self-harm in electronic healthcare records
por: Ayre, Karyn, et al.
Publicado: (2021) -
Natural Language Processing of Electronic Patient Records to Predict Psychiatric Inpatients at Risk of Early Readmission to Hospital Using Predictive Models Derived Through Machine Learning
por: Kapadi, Tarif, et al.
Publicado: (2022) -
Risk Factors for Self-Harm and Suicide Upon Release From Prison: A Systematic Review
por: Abdou, Nouran, et al.
Publicado: (2023) -
Successful intraprocedural anticoagulation with bivalirudin during pulmonary vein isolation in a patient with known heparin-induced thrombocytopenia type II
por: Bellmann, Barbara, et al.
Publicado: (2016) -
A case report of successful permanent pacemaker implantation via the iliac vein
por: Yamaguchi, Tetsuo, et al.
Publicado: (2016)