Cargando…
Performance impact of precision reduction in sparse linear systems solvers
It is well established that reduced precision arithmetic can be exploited to accelerate the solution of dense linear systems. Typical examples are mixed precision algorithms that reduce the execution time and the energy consumption of parallel solvers for dense linear systems by factorizing a matrix...
Autores principales: | Zounon, Mawussi, Higham, Nicholas J., Lucas, Craig, Tisseur, Françoise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8771784/ https://www.ncbi.nlm.nih.gov/pubmed/35111903 http://dx.doi.org/10.7717/peerj-cs.778 |
Ejemplares similares
-
RobOMP: Robust variants of Orthogonal Matching Pursuit for sparse representations
por: Loza, Carlos A.
Publicado: (2019) -
Numerical behavior of NVIDIA tensor cores
por: Fasi, Massimiliano, et al.
Publicado: (2021) -
Deep fake detection using a sparse auto encoder with a graph capsule dual graph CNN
por: Kandasamy, Venkatachalam, et al.
Publicado: (2022) -
A new non-monotonic infeasible simplex-type algorithm for Linear Programming
por: Triantafyllidis, Charalampos P., et al.
Publicado: (2020) -
Context-based sentiment analysis on customer reviews using machine learning linear models
por: Chinnalagu, Anandan, et al.
Publicado: (2021)