Cargando…
Predicting Ca(2+) and Mg(2+) ligand binding sites by deep neural network algorithm
BACKGROUND: Alkaline earth metal ions are important protein binding ligands in human body, and it is of great significance to predict their binding residues. RESULTS: In this paper, Mg(2+) and Ca(2+) ligands are taken as the research objects. Based on the characteristic parameters of protein sequenc...
Autores principales: | Sun, Kai, Hu, Xiuzhen, Feng, Zhenxing, Wang, Hongbin, Lv, Haotian, Wang, Ziyang, Zhang, Gaimei, Xu, Shuang, You, Xiaoxiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772041/ https://www.ncbi.nlm.nih.gov/pubmed/35045825 http://dx.doi.org/10.1186/s12859-021-04250-0 |
Ejemplares similares
-
Recognizing ion ligand binding sites by SMO algorithm
por: Wang, Shan, et al.
Publicado: (2019) -
Prediction of metal ion ligand binding residues by adding disorder value and propensity factors based on deep learning algorithm
por: Hao, Sixi, et al.
Publicado: (2022) -
Recognition of Metal Ion Ligand-Binding Residues by Adding Correlation Features and Propensity Factors
por: Xu, Shuang, et al.
Publicado: (2022) -
Recognizing Ion Ligand–Binding Residues by Random Forest Algorithm Based on Optimized Dihedral Angle
por: Liu, Liu, et al.
Publicado: (2020) -
The Identification of Metal Ion Ligand-Binding Residues by Adding the Reclassified Relative Solvent Accessibility
por: Hu, Xiuzhen, et al.
Publicado: (2020)