Cargando…
MetaCRS: unsupervised clustering of contigs with the recursive strategy of reducing metagenomic dataset’s complexity
BACKGROUND: Metagenomics technology can directly extract microbial genetic material from the environmental samples to obtain their sequencing reads, which can be further assembled into contigs through assembly tools. Clustering methods of contigs are subsequently applied to recover complete genomes...
Autores principales: | Jiang, Zhongjun, Li, Xiaobo, Guo, Lijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772042/ https://www.ncbi.nlm.nih.gov/pubmed/35045830 http://dx.doi.org/10.1186/s12859-021-04227-z |
Ejemplares similares
-
MetaDecoder: a novel method for clustering metagenomic contigs
por: Liu, Cong-Cong, et al.
Publicado: (2022) -
MetaCon: unsupervised clustering of metagenomic contigs with probabilistic k-mers statistics and coverage
por: Qian, Jia, et al.
Publicado: (2019) -
METAMVGL: a multi-view graph-based metagenomic contig binning algorithm by integrating assembly and paired-end graphs
por: Zhang, Zhenmiao, et al.
Publicado: (2021) -
Improving contig binning of metagenomic data using [Formula: see text] oligonucleotide frequency dissimilarity
por: Wang, Ying, et al.
Publicado: (2017) -
An Integrated Pipeline for Annotation and Visualization of Metagenomic Contigs
por: Dong, Xiaoli, et al.
Publicado: (2019)