Cargando…
Drug–target interaction prediction via multiple classification strategies
BACKGROUND: Computational prediction of the interaction between drugs and protein targets is very important for the new drug discovery, as the experimental determination of drug-target interaction (DTI) is expensive and time-consuming. However, different protein targets are with very different numbe...
Autores principales: | Ye, Qing, Zhang, Xiaolong, Lin, Xiaoli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772044/ https://www.ncbi.nlm.nih.gov/pubmed/35057737 http://dx.doi.org/10.1186/s12859-021-04366-3 |
Ejemplares similares
-
Detecting Drug–Target Interactions with Feature Similarity Fusion and Molecular Graphs
por: Lin, Xiaoli, et al.
Publicado: (2022) -
Deep learning-based transcriptome data classification for drug-target interaction prediction
por: Xie, Lingwei, et al.
Publicado: (2018) -
Drug repurposing and prediction of multiple interaction types via graph embedding
por: Amiri Souri, E., et al.
Publicado: (2023) -
Predicting existing targets for new drugs base on strategies for missing interactions
por: Shi, Jian-Yu, et al.
Publicado: (2016) -
An Integrated Local Classification Model of Predicting Drug-Drug Interactions via Dempster-Shafer Theory of Evidence
por: Shi, Jian-Yu, et al.
Publicado: (2018)