Cargando…
Multi-view manifold regularized compact low-rank representation for cancer samples clustering on multi-omics data
BACKGROUND: The identification of cancer types is of great significance for early diagnosis and clinical treatment of cancer. Clustering cancer samples is an important means to identify cancer types, which has been paid much attention in the field of bioinformatics. The purpose of cancer clustering...
Autores principales: | Wang, Juan, Lu, Cong-Hai, Kong, Xiang-Zhen, Dai, Ling-Yun, Yuan, Shasha, Zhang, Xiaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772048/ https://www.ncbi.nlm.nih.gov/pubmed/35057729 http://dx.doi.org/10.1186/s12859-021-04220-6 |
Ejemplares similares
-
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
por: Wang, Juan, et al.
Publicado: (2019) -
Non-Negative Symmetric Low-Rank Representation Graph Regularized Method for Cancer Clustering Based on Score Function
por: Lu, Conghai, et al.
Publicado: (2020) -
Multi-omic and multi-view clustering algorithms: review and cancer benchmark
por: Rappoport, Nimrod, et al.
Publicado: (2019) -
Multi-omic and multi-view clustering algorithms: review and cancer benchmark
por: Rappoport, Nimrod, et al.
Publicado: (2018) -
Multi-view clustering for multi-omics data using unified embedding
por: Mitra, Sayantan, et al.
Publicado: (2020)