Cargando…
Machine learning model for predicting acute kidney injury progression in critically ill patients
BACKGROUND: Acute kidney injury (AKI) is a serve and harmful syndrome in the intensive care unit. Comparing to the patients with AKI stage 1/2, the patients with AKI stage 3 have higher in-hospital mortality and risk of progression to chronic kidney disease. The purpose of this study is to develop a...
Autores principales: | Wei, Canzheng, Zhang, Lifan, Feng, Yunxia, Ma, Aijia, Kang, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772216/ https://www.ncbi.nlm.nih.gov/pubmed/35045840 http://dx.doi.org/10.1186/s12911-021-01740-2 |
Ejemplares similares
-
Predicting outcomes of acute kidney injury in critically ill patients using machine learning
por: Nateghi Haredasht, Fateme, et al.
Publicado: (2023) -
Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning
por: Shawwa, Khaled, et al.
Publicado: (2020) -
Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury
por: Li, Xunliang, et al.
Publicado: (2023) -
Federated machine learning for predicting acute kidney injury in critically ill patients: a multicenter study in Taiwan
por: Huang, Chun-Te, et al.
Publicado: (2023) -
Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor
por: Flechet, Marine, et al.
Publicado: (2019)