Cargando…
Can minimal clinically important differences in patient reported outcome measures be predicted by machine learning in patients with total knee or hip arthroplasty? A systematic review
OBJECTIVES: To systematically review studies using machine learning (ML) algorithms to predict whether patients undergoing total knee or total hip arthroplasty achieve an improvement as high or higher than the minimal clinically important differences (MCID) in patient reported outcome measures (PROM...
Autores principales: | Langenberger, Benedikt, Thoma, Andreas, Vogt, Verena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772225/ https://www.ncbi.nlm.nih.gov/pubmed/35045838 http://dx.doi.org/10.1186/s12911-022-01751-7 |
Ejemplares similares
-
Predicting whether patients will achieve minimal clinically important differences following hip or knee arthroplasty: a performance comparison of machine learning, logistic regression, and pre-surgery PROM scores using data from nine German hospitals
por: Langenberger, Benedikt, et al.
Publicado: (2023) -
Responsiveness and minimal important differences after revision total hip arthroplasty
por: Shi, Hon-Yi, et al.
Publicado: (2010) -
Important patient characteristics differ prior to total knee arthroplasty and total hip arthroplasty between Switzerland and the United States
por: Franklin, Patricia D., et al.
Publicado: (2017) -
Venous Thromboembolism in Total Hip and Total Knee Arthroplasty
por: Simon, Samantha J., et al.
Publicado: (2023) -
Are outpatient total hip and knee arthroplasties safe?
por: Atik, O. Şahap, et al.
Publicado: (2021)