Cargando…
Pathway-Dependent Grain Coarsening of Block Copolymer Patterns under Controlled Solvent Evaporation
[Image: see text] Solvent evaporation annealing (SEA) is a straightforward, single-step casting and annealing method of block copolymers (BCP) processing yielding large-grained morphologies in a very short time. Here, we present a quantitative analysis of BCP grain-coarsening in thin films under con...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772373/ https://www.ncbi.nlm.nih.gov/pubmed/35574792 http://dx.doi.org/10.1021/acsmacrolett.1c00677 |
_version_ | 1784635834718224384 |
---|---|
author | Leniart, Arkadiusz A. Pula, Przemyslaw Style, Robert W. Majewski, Pawel W. |
author_facet | Leniart, Arkadiusz A. Pula, Przemyslaw Style, Robert W. Majewski, Pawel W. |
author_sort | Leniart, Arkadiusz A. |
collection | PubMed |
description | [Image: see text] Solvent evaporation annealing (SEA) is a straightforward, single-step casting and annealing method of block copolymers (BCP) processing yielding large-grained morphologies in a very short time. Here, we present a quantitative analysis of BCP grain-coarsening in thin films under controlled evaporation of the solvent. Our study is aimed at understanding time and BCP concentration influence on the rate of the lateral growth of BCP grains. By systematically investigating the coarsening kinetics at various BCP concentrations, we observed a steeply decreasing exponential dependence of the kinetics power-law time exponent on polymer concentration. We used this dependence to formulate a mathematical model of BCP ordering under nonstationary conditions and a 2D, time- and concentration-dependent coarsening rate diagram, which can be used as an aid in engineering the BCP processing pathway in SEA and also in other directed self-assembly methods that utilize BCP–solvent interactions such as solvent vapor annealing. |
format | Online Article Text |
id | pubmed-8772373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87723732022-01-21 Pathway-Dependent Grain Coarsening of Block Copolymer Patterns under Controlled Solvent Evaporation Leniart, Arkadiusz A. Pula, Przemyslaw Style, Robert W. Majewski, Pawel W. ACS Macro Lett [Image: see text] Solvent evaporation annealing (SEA) is a straightforward, single-step casting and annealing method of block copolymers (BCP) processing yielding large-grained morphologies in a very short time. Here, we present a quantitative analysis of BCP grain-coarsening in thin films under controlled evaporation of the solvent. Our study is aimed at understanding time and BCP concentration influence on the rate of the lateral growth of BCP grains. By systematically investigating the coarsening kinetics at various BCP concentrations, we observed a steeply decreasing exponential dependence of the kinetics power-law time exponent on polymer concentration. We used this dependence to formulate a mathematical model of BCP ordering under nonstationary conditions and a 2D, time- and concentration-dependent coarsening rate diagram, which can be used as an aid in engineering the BCP processing pathway in SEA and also in other directed self-assembly methods that utilize BCP–solvent interactions such as solvent vapor annealing. American Chemical Society 2021-12-30 2022-01-18 /pmc/articles/PMC8772373/ /pubmed/35574792 http://dx.doi.org/10.1021/acsmacrolett.1c00677 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Leniart, Arkadiusz A. Pula, Przemyslaw Style, Robert W. Majewski, Pawel W. Pathway-Dependent Grain Coarsening of Block Copolymer Patterns under Controlled Solvent Evaporation |
title | Pathway-Dependent Grain Coarsening of Block Copolymer
Patterns under Controlled Solvent Evaporation |
title_full | Pathway-Dependent Grain Coarsening of Block Copolymer
Patterns under Controlled Solvent Evaporation |
title_fullStr | Pathway-Dependent Grain Coarsening of Block Copolymer
Patterns under Controlled Solvent Evaporation |
title_full_unstemmed | Pathway-Dependent Grain Coarsening of Block Copolymer
Patterns under Controlled Solvent Evaporation |
title_short | Pathway-Dependent Grain Coarsening of Block Copolymer
Patterns under Controlled Solvent Evaporation |
title_sort | pathway-dependent grain coarsening of block copolymer
patterns under controlled solvent evaporation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772373/ https://www.ncbi.nlm.nih.gov/pubmed/35574792 http://dx.doi.org/10.1021/acsmacrolett.1c00677 |
work_keys_str_mv | AT leniartarkadiusza pathwaydependentgraincoarseningofblockcopolymerpatternsundercontrolledsolventevaporation AT pulaprzemyslaw pathwaydependentgraincoarseningofblockcopolymerpatternsundercontrolledsolventevaporation AT stylerobertw pathwaydependentgraincoarseningofblockcopolymerpatternsundercontrolledsolventevaporation AT majewskipawelw pathwaydependentgraincoarseningofblockcopolymerpatternsundercontrolledsolventevaporation |