Cargando…
Supervised Classification of Operator Functional State Based on Physiological Data: Application to Drones Swarm Piloting
To improve the safety and the performance of operators involved in risky and demanding missions (like drone operators), human-machine cooperation should be dynamically adapted, in terms of dialogue or function allocation. To support this reconfigurable cooperation, a crucial point is to assess onlin...
Autores principales: | Kostenko, Alexandre, Rauffet, Philippe, Coppin, Gilles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772640/ https://www.ncbi.nlm.nih.gov/pubmed/35069348 http://dx.doi.org/10.3389/fpsyg.2021.770000 |
Ejemplares similares
-
An Application of Inverse Reinforcement Learning to Estimate Interference in Drone Swarms
por: Kim, Keum Joo, et al.
Publicado: (2022) -
Model driven development for embedded software: application to communications for drone swarm
por: Maxa, Jean-Aime
Publicado: (2018) -
Cross-Entropy as a Metric for the Robustness of Drone Swarms
por: Cofta, Piotr, et al.
Publicado: (2020) -
Beehive-Inspired Information Gathering with a Swarm of Autonomous Drones
por: Viseras, Alberto, et al.
Publicado: (2019) -
Drone Swarms as Networked Control Systems by Integration of Networking and Computing
por: Asaamoning, Godwin, et al.
Publicado: (2021)