Cargando…
Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review
Background: Alzheimer’s disease (AD) has paramount importance due to its rising prevalence, the impact on the patient and society, and the related healthcare costs. However, current diagnostic techniques are not designed for frequent mass screening, delaying therapeutic intervention and worsening pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772820/ https://www.ncbi.nlm.nih.gov/pubmed/35049736 http://dx.doi.org/10.3390/bioengineering9010027 |
_version_ | 1784635933943922688 |
---|---|
author | Vigo, Inês Coelho, Luis Reis, Sara |
author_facet | Vigo, Inês Coelho, Luis Reis, Sara |
author_sort | Vigo, Inês |
collection | PubMed |
description | Background: Alzheimer’s disease (AD) has paramount importance due to its rising prevalence, the impact on the patient and society, and the related healthcare costs. However, current diagnostic techniques are not designed for frequent mass screening, delaying therapeutic intervention and worsening prognoses. To be able to detect AD at an early stage, ideally at a pre-clinical stage, speech analysis emerges as a simple low-cost non-invasive procedure. Objectives: In this work it is our objective to do a systematic review about speech-based detection and classification of Alzheimer’s Disease with the purpose of identifying the most effective algorithms and best practices. Methods: A systematic literature search was performed from Jan 2015 up to May 2020 using ScienceDirect, PubMed and DBLP. Articles were screened by title, abstract and full text as needed. A manual complementary search among the references of the included papers was also performed. Inclusion criteria and search strategies were defined a priori. Results: We were able: to identify the main resources that can support the development of decision support systems for AD, to list speech features that are correlated with the linguistic and acoustic footprint of the disease, to recognize the data models that can provide robust results and to observe the performance indicators that were reported. Discussion: A computational system with the adequate elements combination, based on the identified best-practices, can point to a whole new diagnostic approach, leading to better insights about AD symptoms and its disease patterns, creating conditions to promote a longer life span as well as an improvement in patient quality of life. The clinically relevant results that were identified can be used to establish a reference system and help to define research guidelines for future developments. |
format | Online Article Text |
id | pubmed-8772820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87728202022-01-21 Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review Vigo, Inês Coelho, Luis Reis, Sara Bioengineering (Basel) Systematic Review Background: Alzheimer’s disease (AD) has paramount importance due to its rising prevalence, the impact on the patient and society, and the related healthcare costs. However, current diagnostic techniques are not designed for frequent mass screening, delaying therapeutic intervention and worsening prognoses. To be able to detect AD at an early stage, ideally at a pre-clinical stage, speech analysis emerges as a simple low-cost non-invasive procedure. Objectives: In this work it is our objective to do a systematic review about speech-based detection and classification of Alzheimer’s Disease with the purpose of identifying the most effective algorithms and best practices. Methods: A systematic literature search was performed from Jan 2015 up to May 2020 using ScienceDirect, PubMed and DBLP. Articles were screened by title, abstract and full text as needed. A manual complementary search among the references of the included papers was also performed. Inclusion criteria and search strategies were defined a priori. Results: We were able: to identify the main resources that can support the development of decision support systems for AD, to list speech features that are correlated with the linguistic and acoustic footprint of the disease, to recognize the data models that can provide robust results and to observe the performance indicators that were reported. Discussion: A computational system with the adequate elements combination, based on the identified best-practices, can point to a whole new diagnostic approach, leading to better insights about AD symptoms and its disease patterns, creating conditions to promote a longer life span as well as an improvement in patient quality of life. The clinically relevant results that were identified can be used to establish a reference system and help to define research guidelines for future developments. MDPI 2022-01-11 /pmc/articles/PMC8772820/ /pubmed/35049736 http://dx.doi.org/10.3390/bioengineering9010027 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Systematic Review Vigo, Inês Coelho, Luis Reis, Sara Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review |
title | Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review |
title_full | Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review |
title_fullStr | Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review |
title_full_unstemmed | Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review |
title_short | Speech- and Language-Based Classification of Alzheimer’s Disease: A Systematic Review |
title_sort | speech- and language-based classification of alzheimer’s disease: a systematic review |
topic | Systematic Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772820/ https://www.ncbi.nlm.nih.gov/pubmed/35049736 http://dx.doi.org/10.3390/bioengineering9010027 |
work_keys_str_mv | AT vigoines speechandlanguagebasedclassificationofalzheimersdiseaseasystematicreview AT coelholuis speechandlanguagebasedclassificationofalzheimersdiseaseasystematicreview AT reissara speechandlanguagebasedclassificationofalzheimersdiseaseasystematicreview |