Cargando…
Reply to the ‘Comment on “Ultralow magnetostrictive flexible ferromagnetic nanowires”’ by D. Faurie, N. Challab, M. Haboussi, and F. Zighem, Nanoscale, 2022, 14, DOI: 10.1039/D1NR01773J
In the comment to our paper, D. Faurie et al. have carried out simulations on Co-nanowires subjected to tensile stress perpendicular to the length of the nanowires. According to their simulation, the low effective magnetostriction constant of the Co nanowires results from a very low transfer of stre...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772894/ https://www.ncbi.nlm.nih.gov/pubmed/35014652 http://dx.doi.org/10.1039/d1nr05893b |
Sumario: | In the comment to our paper, D. Faurie et al. have carried out simulations on Co-nanowires subjected to tensile stress perpendicular to the length of the nanowires. According to their simulation, the low effective magnetostriction constant of the Co nanowires results from a very low transfer of stress. They suggest that a higher transfer of stress would be obtained if the wires are bent along the length of the nanowires. Here we compare the result of magneto-optical experiments conducted by bending the nanowires both along and perpendicular to their long axis. The obtained effective magnetostriction of the Co-nanowires is, within the experimental resolution, independent of the bending direction. |
---|