Cargando…
Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease
An increased risk of cardiovascular events was identified in patients with peripheral artery disease (PAD). Clopidogrel is one of the most widely used antiplatelet medications. However, there are heterogeneous outcomes when clopidogrel is used to prevent cardiovascular events in PAD patients. Here,...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773099/ https://www.ncbi.nlm.nih.gov/pubmed/35052795 http://dx.doi.org/10.3390/biomedicines10010116 |
_version_ | 1784635999358287872 |
---|---|
author | Yeh, Chi-Hsiao Chou, Yi-Ju Tsai, Tsung-Hsien Hsu, Paul Wei-Che Li, Chun-Hsien Chan, Yun-Hsuan Tsai, Shih-Feng Ng, Soh-Ching Chou, Kuei-Mei Lin, Yu-Ching Juan, Yu-Hsiang Fu, Tieh-Cheng Lai, Chi-Chun Sytwu, Huey-Kang Tsai, Ting-Fen |
author_facet | Yeh, Chi-Hsiao Chou, Yi-Ju Tsai, Tsung-Hsien Hsu, Paul Wei-Che Li, Chun-Hsien Chan, Yun-Hsuan Tsai, Shih-Feng Ng, Soh-Ching Chou, Kuei-Mei Lin, Yu-Ching Juan, Yu-Hsiang Fu, Tieh-Cheng Lai, Chi-Chun Sytwu, Huey-Kang Tsai, Ting-Fen |
author_sort | Yeh, Chi-Hsiao |
collection | PubMed |
description | An increased risk of cardiovascular events was identified in patients with peripheral artery disease (PAD). Clopidogrel is one of the most widely used antiplatelet medications. However, there are heterogeneous outcomes when clopidogrel is used to prevent cardiovascular events in PAD patients. Here, we use an artificial intelligence (AI)-assisted methodology to identify genetic factors potentially involved in the clopidogrel-resistant mechanism, which is currently unclear. Several discoveries can be pinpointed. Firstly, a high proportion (>50%) of clopidogrel resistance was found among diabetic PAD patients in Taiwan. Interestingly, our result suggests that platelet function test-guided antiplatelet therapy appears to reduce the post-interventional occurrence of major adverse cerebrovascular and cardiac events in diabetic PAD patients. Secondly, AI-assisted genome-wide association study of a single-nucleotide polymorphism (SNP) database identified a SNP signature composed of 20 SNPs, which are mapped into 9 protein-coding genes (SLC37A2, IQSEC1, WASHC3, PSD3, BTBD7, GLIS3, PRDM11, LRBA1, and CNR1). Finally, analysis of the protein connectivity map revealed that LRBA, GLIS3, BTBD7, IQSEC1, and PSD3 appear to form a protein interaction network. Intriguingly, the genetic factors seem to pinpoint a pathway related to endocytosis and recycling of P2Y12 receptor, which is the drug target of clopidogrel. Our findings reveal that a combination of AI-assisted discovery of SNP signatures and clinical parameters has the potential to develop an ethnic-specific precision medicine for antiplatelet therapy in diabetic PAD patients. |
format | Online Article Text |
id | pubmed-8773099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87730992022-01-21 Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease Yeh, Chi-Hsiao Chou, Yi-Ju Tsai, Tsung-Hsien Hsu, Paul Wei-Che Li, Chun-Hsien Chan, Yun-Hsuan Tsai, Shih-Feng Ng, Soh-Ching Chou, Kuei-Mei Lin, Yu-Ching Juan, Yu-Hsiang Fu, Tieh-Cheng Lai, Chi-Chun Sytwu, Huey-Kang Tsai, Ting-Fen Biomedicines Article An increased risk of cardiovascular events was identified in patients with peripheral artery disease (PAD). Clopidogrel is one of the most widely used antiplatelet medications. However, there are heterogeneous outcomes when clopidogrel is used to prevent cardiovascular events in PAD patients. Here, we use an artificial intelligence (AI)-assisted methodology to identify genetic factors potentially involved in the clopidogrel-resistant mechanism, which is currently unclear. Several discoveries can be pinpointed. Firstly, a high proportion (>50%) of clopidogrel resistance was found among diabetic PAD patients in Taiwan. Interestingly, our result suggests that platelet function test-guided antiplatelet therapy appears to reduce the post-interventional occurrence of major adverse cerebrovascular and cardiac events in diabetic PAD patients. Secondly, AI-assisted genome-wide association study of a single-nucleotide polymorphism (SNP) database identified a SNP signature composed of 20 SNPs, which are mapped into 9 protein-coding genes (SLC37A2, IQSEC1, WASHC3, PSD3, BTBD7, GLIS3, PRDM11, LRBA1, and CNR1). Finally, analysis of the protein connectivity map revealed that LRBA, GLIS3, BTBD7, IQSEC1, and PSD3 appear to form a protein interaction network. Intriguingly, the genetic factors seem to pinpoint a pathway related to endocytosis and recycling of P2Y12 receptor, which is the drug target of clopidogrel. Our findings reveal that a combination of AI-assisted discovery of SNP signatures and clinical parameters has the potential to develop an ethnic-specific precision medicine for antiplatelet therapy in diabetic PAD patients. MDPI 2022-01-06 /pmc/articles/PMC8773099/ /pubmed/35052795 http://dx.doi.org/10.3390/biomedicines10010116 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yeh, Chi-Hsiao Chou, Yi-Ju Tsai, Tsung-Hsien Hsu, Paul Wei-Che Li, Chun-Hsien Chan, Yun-Hsuan Tsai, Shih-Feng Ng, Soh-Ching Chou, Kuei-Mei Lin, Yu-Ching Juan, Yu-Hsiang Fu, Tieh-Cheng Lai, Chi-Chun Sytwu, Huey-Kang Tsai, Ting-Fen Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease |
title | Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease |
title_full | Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease |
title_fullStr | Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease |
title_full_unstemmed | Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease |
title_short | Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease |
title_sort | artificial-intelligence-assisted discovery of genetic factors for precision medicine of antiplatelet therapy in diabetic peripheral artery disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773099/ https://www.ncbi.nlm.nih.gov/pubmed/35052795 http://dx.doi.org/10.3390/biomedicines10010116 |
work_keys_str_mv | AT yehchihsiao artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT chouyiju artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT tsaitsunghsien artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT hsupaulweiche artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT lichunhsien artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT chanyunhsuan artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT tsaishihfeng artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT ngsohching artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT choukueimei artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT linyuching artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT juanyuhsiang artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT futiehcheng artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT laichichun artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT sytwuhueykang artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease AT tsaitingfen artificialintelligenceassisteddiscoveryofgeneticfactorsforprecisionmedicineofantiplatelettherapyindiabeticperipheralarterydisease |