Cargando…

Deep Ensemble Model for COVID-19 Diagnosis and Classification Using Chest CT Images

SIMPLE SUMMARY: Coronavirus disease 2019 is a worldwide pandemic posing significant health risks. Medical imaging tools can be considered as a supporting diagnostic testing method for coronavirus disease since it uses available medical technologies and clinical findings. The classification of corona...

Descripción completa

Detalles Bibliográficos
Autores principales: Ragab, Mahmoud, Eljaaly, Khalid, Alhakamy, Nabil A., Alhadrami, Hani A., Bahaddad, Adel A., Abo-Dahab, Sayed M., Khalil, Eied M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773139/
https://www.ncbi.nlm.nih.gov/pubmed/35053041
http://dx.doi.org/10.3390/biology11010043
Descripción
Sumario:SIMPLE SUMMARY: Coronavirus disease 2019 is a worldwide pandemic posing significant health risks. Medical imaging tools can be considered as a supporting diagnostic testing method for coronavirus disease since it uses available medical technologies and clinical findings. The classification of coronavirus disease using computed tomography chest images necessitates massive data collection and innovative artificial intelligence-based models. In this study, we explored the significant application of computer vision and an ensemble of deep learning models for automated coronavirus disease detection. In order to show the better performance of the proposed model over the recently developed deep learning models, an extensive comparative analysis is made, and the obtained results exhibit the superior performance of the proposed model on benchmark test images. Therefore, the proposed model has the potential as an automated, accurate, and rapid tool for supporting the detection and classification process of coronavirus disease. ABSTRACT: Coronavirus disease 2019 (COVID-19) has spread worldwide, and medicinal resources have become inadequate in several regions. Computed tomography (CT) scans are capable of achieving precise and rapid COVID-19 diagnosis compared to the RT-PCR test. At the same time, artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL), find it useful to design COVID-19 diagnoses using chest CT scans. In this aspect, this study concentrates on the design of an artificial intelligence-based ensemble model for the detection and classification (AIEM-DC) of COVID-19. The AIEM-DC technique aims to accurately detect and classify the COVID-19 using an ensemble of DL models. In addition, Gaussian filtering (GF)-based preprocessing technique is applied for the removal of noise and improve image quality. Moreover, a shark optimization algorithm (SOA) with an ensemble of DL models, namely recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU), is employed for feature extraction. Furthermore, an improved bat algorithm with a multiclass support vector machine (IBA-MSVM) model is applied for the classification of CT scans. The design of the ensemble model with optimal parameter tuning of the MSVM model for COVID-19 classification shows the novelty of the work. The effectiveness of the AIEM-DC technique take place on benchmark CT image data set, and the results reported the promising classification performance of the AIEM-DC technique over the recent state-of-the-art approaches.