Cargando…
Proteomic Analysis of Exosomes Secreted from Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells
SIMPLE SUMMARY: The overexpression of human alpha-1 antitrypsin (hAAT) in mesenchymal stromal cells (MSCs) improved their intrinsic properties with enhanced protective effects in previous murine models of type 1 diabetes. This study compared the protein profiles of extracellular vesicles (EVs) from...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773149/ https://www.ncbi.nlm.nih.gov/pubmed/35053007 http://dx.doi.org/10.3390/biology11010009 |
Sumario: | SIMPLE SUMMARY: The overexpression of human alpha-1 antitrypsin (hAAT) in mesenchymal stromal cells (MSCs) improved their intrinsic properties with enhanced protective effects in previous murine models of type 1 diabetes. This study compared the protein profiles of extracellular vesicles (EVs) from bone marrow-derived control or hAAT-MSCs. EVs from both cell types share common features in size and exosome marker expression. By comparing common proteins in EVs from three donor cell lines using Gene Ontology (GO) analysis, we found that common EV proteins from all donors are important to cell adhesion and extracellular matrix organization. Differentially expressed proteins from hAAT-MSCs and MSCs are involved in cytokine signaling of the immune system, stem cell differentiation, and carbohydrate metabolism. This study shows that hAAT-MSCs have different profiles of paracrine effector exosomal proteins compared to control MSCs. ABSTRACT: Extracellular vesicles (EVs) mediate many therapeutic effects of stem cells during cellular therapies. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) were manufactured to overexpress the human antiprotease alpha-1 antitrypsin (hAAT) and studied to compare the EV production compared to lentivirus treated control MSCs. The goal of this study was to compare protein profiles in the EVs/exosomes of control and hAAT-MSCs using unbiased, high resolution liquid chromatography and mass spectrometry to explore differences. Nanoparticle tracking analysis (NTA) showed that the particle size of the EVs from control MSCs or hAAT-MSCs ranged from 30 to 200 nm. Both MSCs and hAAT-MSCs expressed exosome-associated proteins, including CD63, CD81, and CD9. hAAT-MSCs also expressed high levels of hAAT. We next performed proteomic analysis of EVs from three healthy donor cell lines. Exosomes collected from cell supernatant were classified by GO analysis which showed proteins important to cell adhesion and extracellular matrix organization. However, there were differences between exosomes from control MSCs and hAAT-MSCs in cytokine signaling of the immune system, stem cell differentiation, and carbohydrate metabolism (p < 0.05). These results show that hAAT-MSC exosomes contain a different profile of paracrine effectors with altered immune function, impacts on MSC stemness, differentiation, and prevention of cell apoptosis and survival that could contribute to improved therapeutic functions. |
---|