Cargando…
TERT Promoter Revertant Mutation Inhibits Melanoma Growth through Intrinsic Apoptosis
SIMPLE SUMMARY: TERT -146 C>T frequently occurs in many cancer cells. Research targeting the telomerase reverse transcriptase (TERT) promoter contributes to a better understanding of cancer development and treatment. Many conventional cancer treatments aim to develop new drugs targeting TERT. Her...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773187/ https://www.ncbi.nlm.nih.gov/pubmed/35053139 http://dx.doi.org/10.3390/biology11010141 |
Sumario: | SIMPLE SUMMARY: TERT -146 C>T frequently occurs in many cancer cells. Research targeting the telomerase reverse transcriptase (TERT) promoter contributes to a better understanding of cancer development and treatment. Many conventional cancer treatments aim to develop new drugs targeting TERT. Here, for TERT -146 we converted T to C. The proliferation, migration and invasion of melanoma cells in vitro, and the growth of the tumor in vivo were inhibited. Moreover, the downregulated protein expression of B-cell lymphoma 2 (Bcl-2) indicated that the TERT promoter revertant mutation abrogated the inhibitory effect of mutant TERT on apoptosis. These data elucidated the relationship between the TERT promoter revertant mutations and apoptosis for the first time, and also implied that TERT -146 may be a causal mutation of melanoma. This study provides a new insight into the TERT promoter revertant mutations and apoptosis. The TERT promoter provides preliminary validation of the potential tumor treatment. ABSTRACT: Human telomerase is a specialized DNA polymerase whose catalytic core includes both TERT and human telomerase RNA (hTR). Telomerase in humans, which is silent in most somatic cells, is activated to maintain the telomere length (TEL) in various types of cancer cells, including melanoma. In the vast majority of tumor cells, the TERT promoter is mutated to promote proliferation and inhibit apoptosis. Here, we exploited NG-ABEmax to revert TERT -146 T to -146 C in melanoma, and successfully obtained TERT promoter revertant mutant cells. These TERT revertant mutant cells exhibited significant growth inhibition both in vitro and in vivo. Moreover, A375(−146C/C) cells exhibited telomere shortening and the downregulation of TERT at both the transcription and protein levels, and migration and invasion were inhibited. In addition, TERT promoter revertant mutation abrogated the inhibitory effect of mutant TERT on apoptosis via B-cell lymphoma 2 (Bcl-2), ultimately leading to cell death. Collectively, the results of our work demonstrate that reverting mutations in the TERT promoter is a potential therapeutic option for melanoma. |
---|