Cargando…
Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats
Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, stor...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773239/ https://www.ncbi.nlm.nih.gov/pubmed/35052588 http://dx.doi.org/10.3390/antiox11010085 |
_version_ | 1784636034330394624 |
---|---|
author | Spiers, Jereme G. Tan, Li Si Anderson, Stephen T. Hill, Andrew F. Lavidis, Nickolas A. Chen, Hsiao-Jou Cortina |
author_facet | Spiers, Jereme G. Tan, Li Si Anderson, Stephen T. Hill, Andrew F. Lavidis, Nickolas A. Chen, Hsiao-Jou Cortina |
author_sort | Spiers, Jereme G. |
collection | PubMed |
description | Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, storage, and secretion. Some metal ions can be transformed by processes including reduction/oxidation (redox) reactions, and correspondingly, the breakdown of metal ion homeostasis can lead to formation of reactive oxygen and nitrogen species. We have previously demonstrated rapid biochemical responses to stress involving alterations in the redox state to generate free radicals and the resultant oxidative stress. However, the effects of stress on redox-active metals including iron and copper and redox-inert zinc have not been well characterised. Therefore, this study aims to examine the changes in these essential metals following exposure to short-term repeated stress, and to further elucidate the alterations in metal homeostasis through expression analysis of different metal transporters. Outbred male Wistar rats were exposed to unrestrained (control), 1 day, or 3 days of 6 h restraint stress (n = 8 per group). After the respective stress treatment, blood and liver samples were collected for the analysis of biometal concentrations and relative gene expression of metal transporter and binding proteins. Exposure to repeated restraint stress was highly effective in causing hepatic redox imbalance. Stress was also shown to induce hepatic metal redistribution, while modulating the mRNA levels of key metal transporters. Overall, this study is the first to characterise the gene expression profile of metal homeostasis following stress and provide insight into the changes occurring prior to the onset of chronic stress conditions. |
format | Online Article Text |
id | pubmed-8773239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87732392022-01-21 Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats Spiers, Jereme G. Tan, Li Si Anderson, Stephen T. Hill, Andrew F. Lavidis, Nickolas A. Chen, Hsiao-Jou Cortina Antioxidants (Basel) Article Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, storage, and secretion. Some metal ions can be transformed by processes including reduction/oxidation (redox) reactions, and correspondingly, the breakdown of metal ion homeostasis can lead to formation of reactive oxygen and nitrogen species. We have previously demonstrated rapid biochemical responses to stress involving alterations in the redox state to generate free radicals and the resultant oxidative stress. However, the effects of stress on redox-active metals including iron and copper and redox-inert zinc have not been well characterised. Therefore, this study aims to examine the changes in these essential metals following exposure to short-term repeated stress, and to further elucidate the alterations in metal homeostasis through expression analysis of different metal transporters. Outbred male Wistar rats were exposed to unrestrained (control), 1 day, or 3 days of 6 h restraint stress (n = 8 per group). After the respective stress treatment, blood and liver samples were collected for the analysis of biometal concentrations and relative gene expression of metal transporter and binding proteins. Exposure to repeated restraint stress was highly effective in causing hepatic redox imbalance. Stress was also shown to induce hepatic metal redistribution, while modulating the mRNA levels of key metal transporters. Overall, this study is the first to characterise the gene expression profile of metal homeostasis following stress and provide insight into the changes occurring prior to the onset of chronic stress conditions. MDPI 2021-12-29 /pmc/articles/PMC8773239/ /pubmed/35052588 http://dx.doi.org/10.3390/antiox11010085 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Spiers, Jereme G. Tan, Li Si Anderson, Stephen T. Hill, Andrew F. Lavidis, Nickolas A. Chen, Hsiao-Jou Cortina Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats |
title | Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats |
title_full | Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats |
title_fullStr | Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats |
title_full_unstemmed | Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats |
title_short | Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats |
title_sort | hepatic homeostasis of metal ions following acute repeated stress exposure in rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773239/ https://www.ncbi.nlm.nih.gov/pubmed/35052588 http://dx.doi.org/10.3390/antiox11010085 |
work_keys_str_mv | AT spiersjeremeg hepatichomeostasisofmetalionsfollowingacuterepeatedstressexposureinrats AT tanlisi hepatichomeostasisofmetalionsfollowingacuterepeatedstressexposureinrats AT andersonstephent hepatichomeostasisofmetalionsfollowingacuterepeatedstressexposureinrats AT hillandrewf hepatichomeostasisofmetalionsfollowingacuterepeatedstressexposureinrats AT lavidisnickolasa hepatichomeostasisofmetalionsfollowingacuterepeatedstressexposureinrats AT chenhsiaojoucortina hepatichomeostasisofmetalionsfollowingacuterepeatedstressexposureinrats |