Cargando…

Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization

In this paper, we propose an improved electrochemical platform based on graphene for the detection of DNA hybridization. Commercial screen-printed carbon electrodes (SPCEs) were used for this purpose due to their ease of functionalization and miniaturization opportunities. SPCEs were modified with r...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiticaru, Elena A., Pilan, Luisa, Ioniţă, Mariana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773470/
https://www.ncbi.nlm.nih.gov/pubmed/35049667
http://dx.doi.org/10.3390/bios12010039
_version_ 1784636094454693888
author Chiticaru, Elena A.
Pilan, Luisa
Ioniţă, Mariana
author_facet Chiticaru, Elena A.
Pilan, Luisa
Ioniţă, Mariana
author_sort Chiticaru, Elena A.
collection PubMed
description In this paper, we propose an improved electrochemical platform based on graphene for the detection of DNA hybridization. Commercial screen-printed carbon electrodes (SPCEs) were used for this purpose due to their ease of functionalization and miniaturization opportunities. SPCEs were modified with reduced graphene oxide (RGO), offering a suitable surface for further functionalization. Therefore, aryl-carboxyl groups were integrated onto RGO-modified electrodes by electrochemical reduction of the corresponding diazonium salt to provide enough reaction sites for the covalent immobilization of amino-modified DNA probes. Our final goal was to determine the optimum conditions needed to fabricate a simple, label-free RGO-based electrochemical platform to detect the hybridization between two complementary single-stranded DNA molecules. Each modification step in the fabrication process was monitored by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using [Fe(CN)(6)](3−/4−) as a redox reporter. Although, the diazonium electrografted layer displayed the expected blocking effect of the charge transfer, the next steps in the modification procedure resulted in enhanced electron transfer properties of the electrode interface. We suggest that the improvement in the charge transfer after the DNA hybridization process could be exploited as a prospective sensing feature. The morphological and structural characterization of the modified electrodes performed by scanning electron microscopy (SEM) and Raman spectroscopy, respectively, were used to validate different modification steps in the platform fabrication process.
format Online
Article
Text
id pubmed-8773470
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87734702022-01-21 Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization Chiticaru, Elena A. Pilan, Luisa Ioniţă, Mariana Biosensors (Basel) Article In this paper, we propose an improved electrochemical platform based on graphene for the detection of DNA hybridization. Commercial screen-printed carbon electrodes (SPCEs) were used for this purpose due to their ease of functionalization and miniaturization opportunities. SPCEs were modified with reduced graphene oxide (RGO), offering a suitable surface for further functionalization. Therefore, aryl-carboxyl groups were integrated onto RGO-modified electrodes by electrochemical reduction of the corresponding diazonium salt to provide enough reaction sites for the covalent immobilization of amino-modified DNA probes. Our final goal was to determine the optimum conditions needed to fabricate a simple, label-free RGO-based electrochemical platform to detect the hybridization between two complementary single-stranded DNA molecules. Each modification step in the fabrication process was monitored by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using [Fe(CN)(6)](3−/4−) as a redox reporter. Although, the diazonium electrografted layer displayed the expected blocking effect of the charge transfer, the next steps in the modification procedure resulted in enhanced electron transfer properties of the electrode interface. We suggest that the improvement in the charge transfer after the DNA hybridization process could be exploited as a prospective sensing feature. The morphological and structural characterization of the modified electrodes performed by scanning electron microscopy (SEM) and Raman spectroscopy, respectively, were used to validate different modification steps in the platform fabrication process. MDPI 2022-01-13 /pmc/articles/PMC8773470/ /pubmed/35049667 http://dx.doi.org/10.3390/bios12010039 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chiticaru, Elena A.
Pilan, Luisa
Ioniţă, Mariana
Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization
title Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization
title_full Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization
title_fullStr Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization
title_full_unstemmed Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization
title_short Electrochemical Detection Platform Based on RGO Functionalized with Diazonium Salt for DNA Hybridization
title_sort electrochemical detection platform based on rgo functionalized with diazonium salt for dna hybridization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773470/
https://www.ncbi.nlm.nih.gov/pubmed/35049667
http://dx.doi.org/10.3390/bios12010039
work_keys_str_mv AT chiticaruelenaa electrochemicaldetectionplatformbasedonrgofunctionalizedwithdiazoniumsaltfordnahybridization
AT pilanluisa electrochemicaldetectionplatformbasedonrgofunctionalizedwithdiazoniumsaltfordnahybridization
AT ionitamariana electrochemicaldetectionplatformbasedonrgofunctionalizedwithdiazoniumsaltfordnahybridization