Cargando…

A Rapid Method for Postmortem Vitreous Chemistry—Deadside Analysis

Vitreous fluid is commonly collected for toxicological analysis during forensic postmortem investigations. Vitreous fluid is also often analyzed for potassium, sodium, chloride and glucose for estimation of time since death, and for the evaluation of electrolyte imbalances and hyperglycemia, respect...

Descripción completa

Detalles Bibliográficos
Autores principales: Zilg, Brita, Alkass, Kanar, Kronstrand, Robert, Berg, Sören, Druid, Henrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773483/
https://www.ncbi.nlm.nih.gov/pubmed/35053180
http://dx.doi.org/10.3390/biom12010032
Descripción
Sumario:Vitreous fluid is commonly collected for toxicological analysis during forensic postmortem investigations. Vitreous fluid is also often analyzed for potassium, sodium, chloride and glucose for estimation of time since death, and for the evaluation of electrolyte imbalances and hyperglycemia, respectively. Obtaining such results in the early phase of a death investigation is desirable both in regard to assisting the police and in the decision-making prior to the autopsy. We analyzed vitreous fluid with blood gas instruments to evaluate/examine the possible impact of different sampling and pre-analytical treatment. We found that samples from the right and left eye, the center of the eye as well as whole vitreous samples gave similar results. We also found imprecision to be very low and that centrifugation and dilution were not necessary when analyzing vitreous samples with blood gas instruments. Similar results were obtained when analyzing the same samples with a regular multi-analysis instrument, but we found that such instruments could require dilution of samples with high viscosity, and that such dilution might impact measurement accuracy. In conclusion, using a blood gas instrument, the analysis of postmortem vitreous fluid for electrolytes and glucose without sample pretreatment produces rapid and reliable results.