Cargando…
Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study
The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially character...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773726/ https://www.ncbi.nlm.nih.gov/pubmed/35053397 http://dx.doi.org/10.3390/cells11020282 |
_version_ | 1784636165657198592 |
---|---|
author | Klimek, Katarzyna Tarczynska, Marta Truszkiewicz, Wieslaw Gaweda, Krzysztof Douglas, Timothy E. L. Ginalska, Grazyna |
author_facet | Klimek, Katarzyna Tarczynska, Marta Truszkiewicz, Wieslaw Gaweda, Krzysztof Douglas, Timothy E. L. Ginalska, Grazyna |
author_sort | Klimek, Katarzyna |
collection | PubMed |
description | The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young’s modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation. |
format | Online Article Text |
id | pubmed-8773726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87737262022-01-21 Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study Klimek, Katarzyna Tarczynska, Marta Truszkiewicz, Wieslaw Gaweda, Krzysztof Douglas, Timothy E. L. Ginalska, Grazyna Cells Article The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young’s modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation. MDPI 2022-01-14 /pmc/articles/PMC8773726/ /pubmed/35053397 http://dx.doi.org/10.3390/cells11020282 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Klimek, Katarzyna Tarczynska, Marta Truszkiewicz, Wieslaw Gaweda, Krzysztof Douglas, Timothy E. L. Ginalska, Grazyna Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study |
title | Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study |
title_full | Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study |
title_fullStr | Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study |
title_full_unstemmed | Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study |
title_short | Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation—A Pilot In-Vitro Study |
title_sort | freeze-dried curdlan/whey protein isolate-based biomaterial as promising scaffold for matrix-associated autologous chondrocyte transplantation—a pilot in-vitro study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773726/ https://www.ncbi.nlm.nih.gov/pubmed/35053397 http://dx.doi.org/10.3390/cells11020282 |
work_keys_str_mv | AT klimekkatarzyna freezedriedcurdlanwheyproteinisolatebasedbiomaterialaspromisingscaffoldformatrixassociatedautologouschondrocytetransplantationapilotinvitrostudy AT tarczynskamarta freezedriedcurdlanwheyproteinisolatebasedbiomaterialaspromisingscaffoldformatrixassociatedautologouschondrocytetransplantationapilotinvitrostudy AT truszkiewiczwieslaw freezedriedcurdlanwheyproteinisolatebasedbiomaterialaspromisingscaffoldformatrixassociatedautologouschondrocytetransplantationapilotinvitrostudy AT gawedakrzysztof freezedriedcurdlanwheyproteinisolatebasedbiomaterialaspromisingscaffoldformatrixassociatedautologouschondrocytetransplantationapilotinvitrostudy AT douglastimothyel freezedriedcurdlanwheyproteinisolatebasedbiomaterialaspromisingscaffoldformatrixassociatedautologouschondrocytetransplantationapilotinvitrostudy AT ginalskagrazyna freezedriedcurdlanwheyproteinisolatebasedbiomaterialaspromisingscaffoldformatrixassociatedautologouschondrocytetransplantationapilotinvitrostudy |