Cargando…

Evaluating Pancreatic and Biliary Neoplasms with Small Biopsy-Based Next Generation Sequencing (NGS): Doing More with Less

SIMPLE SUMMARY: Pancreatic cancer and cholangiocarcinoma are aggressive diseases mostly diagnosed at an advanced and inoperable stage. This review presents the value of next-generation sequencing (NGS) when performed on small biopsies—including fine-needle aspiration/biopsy samples, brushings, pancr...

Descripción completa

Detalles Bibliográficos
Autores principales: Nikas, Ilias P., Mountzios, Giannis, Sydney, Guy I., Ioakim, Kalliopi J., Won, Jae-Kyung, Papageorgis, Panagiotis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773813/
https://www.ncbi.nlm.nih.gov/pubmed/35053560
http://dx.doi.org/10.3390/cancers14020397
Descripción
Sumario:SIMPLE SUMMARY: Pancreatic cancer and cholangiocarcinoma are aggressive diseases mostly diagnosed at an advanced and inoperable stage. This review presents the value of next-generation sequencing (NGS) when performed on small biopsies—including fine-needle aspiration/biopsy samples, brushings, pancreatic juice and bile, and also blood—in the field of pancreatobiliary neoplasia. NGS could guide physicians while evaluating pancreatic solid and cystic lesions or suspicious biliary strictures, performing surveillance in high-risk individuals, or monitoring the disease and assessing prognosis in already diagnosed cancer patients. Evidence suggests that NGS performed on small biopsies is a robust tool for the diagnosis and pre-operative risk stratification of pancreatic and biliary lesions, whereas it also carries significant prognostic and therapeutic value. However, effective standardization of the pre-analytical and analytical assay parameters used for each clinical scenario is needed to fully implement NGS into routine practice and provide more personalized management in patients with suspected or established pancreatobiliary neoplasia. ABSTRACT: Pancreatic cancer and cholangiocarcinoma are lethal diseases mainly diagnosed at an inoperable stage. As pancreatobiliary surgical specimens are often unavailable for further molecular testing, this review aimed to highlight the diagnostic, prognostic, and therapeutic impact of next-generation sequencing (NGS) performed on distinct small biopsies, including endoscopic ultrasound fine-needle aspirations and biopsies of pancreatic solid and cystic lesions, biliary duct brushings, and also “liquid biopsies” such as the pancreatic juice, bile, and blood. NGS could clarify indeterminate pancreatic lesions or biliary strictures, for instance by identifying TP53 or SMAD4 mutations indicating high-grade dysplasia or cancer. It could also stratify pancreatic cystic lesions, by distinguishing mucinous from non-mucinous cysts and identifying high-risk cysts that should be excised in surgically fit patients, whereas the combination of cytology, elevated cystic CEA levels and NGS could improve the overall diagnostic accuracy. When NGS is performed on the pancreatic juice, it could stratify high-risk patients under surveillance. On the plasma, it could dynamically monitor the disease course and response to therapy. Notably, the circulating tumor DNA (ctDNA) levels have been associated with staging, grading, and survival. Lastly, NGS has shown potential in identifying potentially actionable molecular alterations. In conclusion, NGS applied on small biopsies could carry significant diagnostic, prognostic, and therapeutic value.