Cargando…
Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification
Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classifi...
Autores principales: | Jiao, Zhuqing, Chen, Siwei, Shi, Haifeng, Xu, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773824/ https://www.ncbi.nlm.nih.gov/pubmed/35053823 http://dx.doi.org/10.3390/brainsci12010080 |
Ejemplares similares
-
Personality Classification of Social Users Based on Feature Fusion
por: Wang, Xiujuan, et al.
Publicado: (2021) -
Deep fusion of multi-modal features for brain tumor image segmentation
por: Zhang, Guying, et al.
Publicado: (2023) -
Fusion of Multi-Modal Features to Enhance Dense Video Caption
por: Huang, Xuefei, et al.
Publicado: (2023) -
Early MCI-to-AD Conversion Prediction Using Future Value Forecasting of Multimodal Features
por: Minhas, Sidra, et al.
Publicado: (2021) -
Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease
por: Meng, Xianglian, et al.
Publicado: (2022)