Cargando…
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
Automatic high-level feature extraction has become a possibility with the advancement of deep learning, and it has been used to optimize efficiency. Recently, classification methods for Convolutional Neural Network (CNN)-based electroencephalography (EEG) motor imagery have been proposed, and have a...
Autores principales: | Altuwaijri, Ghadir Ali, Muhammad, Ghulam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773854/ https://www.ncbi.nlm.nih.gov/pubmed/35049650 http://dx.doi.org/10.3390/bios12010022 |
Ejemplares similares
-
Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Multibranch convolutional neural network with contrastive representation learning for decoding same limb motor imagery tasks
por: Phunruangsakao, Chatrin, et al.
Publicado: (2022) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023)