Cargando…

Lipotoxicity Downstream of α-Synuclein Imbalance: A Relevant Pathomechanism in Synucleinopathies?

Neuronal loss in Parkinson’s disease and related brain diseases has been firmly linked to the abundant neuronal protein α-synuclein (αS). However, we have gained surprisingly little insight into how exactly αS exerts toxicity in these diseases. Hypotheses of proteotoxicity, disturbed vesicle traffic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tripathi, Arati, Fanning, Saranna, Dettmer, Ulf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774010/
https://www.ncbi.nlm.nih.gov/pubmed/35053188
http://dx.doi.org/10.3390/biom12010040
Descripción
Sumario:Neuronal loss in Parkinson’s disease and related brain diseases has been firmly linked to the abundant neuronal protein α-synuclein (αS). However, we have gained surprisingly little insight into how exactly αS exerts toxicity in these diseases. Hypotheses of proteotoxicity, disturbed vesicle trafficking, mitochondrial dysfunction and other toxicity mechanisms have been proposed, and it seems possible that a combination of different mechanisms may drive pathology. A toxicity mechanism that has caught increased attention in the recent years is αS-related lipotoxicity. Lipotoxicity typically occurs in a cell when fatty acids exceed the metabolic needs, triggering a flux into harmful pathways of non-oxidative metabolism. Genetic and experimental approaches have revealed a significant overlap between lipid storage disorders, most notably Gaucher’s disease, and synucleinopathies. There is accumulating evidence for lipid aberrations causing synuclein misfolding as well as for αS excess and misfolding causing lipid aberration. Does that mean the key problem in synucleinopathies is lipotoxicity, the accumulation of harmful lipid species or alteration in lipid equilibrium? Here, we review the existing literature in an attempt to get closer to an answer.