Cargando…
Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism
Many studies have clarified that microRNAs (miRNAs) are associated with many human diseases. Therefore, it is essential to predict potential miRNA-disease associations for disease pathogenesis and treatment. Numerous machine learning and deep learning approaches have been adopted to this problem. In...
Autores principales: | Jin, Chen, Shi, Zhuangwei, Lin, Ken, Zhang, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774034/ https://www.ncbi.nlm.nih.gov/pubmed/35053212 http://dx.doi.org/10.3390/biom12010064 |
Ejemplares similares
-
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
por: Li, Lei, et al.
Publicado: (2021) -
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
por: Wang, Shudong, et al.
Publicado: (2022) -
Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders
por: Liao, Qingquan, et al.
Publicado: (2023) -
A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations
por: Shi, Zhuangwei, et al.
Publicado: (2021) -
KS-CMI: A circRNA-miRNA interaction prediction method based on the signed graph neural network and denoising autoencoder
por: Wang, Xin-Fei, et al.
Publicado: (2023)