Cargando…
Comparing between Different Sets of Preprocessing, Classifiers, and Channels Selection Techniques to Optimise Motor Imagery Pattern Classification System from EEG Pattern Recognition
The ability to control external devices through thought is increasingly becoming a reality. Human beings can use the electrical signals of their brain to interact or change the surrounding environment and more. The development of this technology called brain-computer interface (BCI) will increasingl...
Autores principales: | Ferracuti, Francesco, Iarlori, Sabrina, Mansour, Zahra, Monteriù, Andrea, Porcaro, Camillo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774038/ https://www.ncbi.nlm.nih.gov/pubmed/35053801 http://dx.doi.org/10.3390/brainsci12010057 |
Ejemplares similares
-
A human-in-the-loop approach for enhancing mobile robot navigation in presence of obstacles not detected by the sensory set
por: Ferracuti, Francesco, et al.
Publicado: (2022) -
Stability of mental motor-imagery classification in EEG depends on the choice of classifier model and experiment design, but not on signal preprocessing
por: Rosenfelder, Martin Justinus, et al.
Publicado: (2023) -
Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review
por: Alzahab, Nibras Abo, et al.
Publicado: (2021) -
Editorial: Robots in assisted living environments: Enhancements, challenges and future perspectives
por: Freddi, Alessandro, et al.
Publicado: (2023) -
EEG oscillatory patterns and classification of sequential compound limb motor imagery
por: Yi, Weibo, et al.
Publicado: (2016)