Cargando…
Noncoding RNAs and Deep Learning Neural Network Discriminate Multi-Cancer Types
SIMPLE SUMMARY: Imprecision and biases inherited in current cancer detection innovations hamper their applications at population level. Here, we employ deep learning neural networks and noncoding RNA biomarkers to develop an accurate cancer detection system to detect multiple cancer types. Our syste...
Autores principales: | Wang, Anyou, Hai, Rong, Rider, Paul J., He, Qianchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774129/ https://www.ncbi.nlm.nih.gov/pubmed/35053515 http://dx.doi.org/10.3390/cancers14020352 |
Ejemplares similares
-
A Web-Server of Cell Type Discrimination System
por: Wang, Anyou, et al.
Publicado: (2014) -
A Quantitative System for Discriminating Induced Pluripotent Stem Cells, Embryonic Stem Cells and Somatic Cells
por: Wang, Anyou, et al.
Publicado: (2013) -
Noncoding RNAs endogenously rule the cancerous regulatory realm while proteins govern the normal
por: Wang, Anyou
Publicado: (2022) -
Systematically dissecting the global mechanism of miRNA functions in mouse pluripotent stem cells
por: Wang, Anyou, et al.
Publicado: (2015) -
FINET: Fast Inferring NETwork
por: Wang, Anyou, et al.
Publicado: (2020)