Cargando…
Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography
SIMPLE SUMMARY: Early image-based diagnosis is crucial to improve outcomes in pancreatic ductal adenocarcinoma (PDAC) patients, but is challenging even for experienced radiologists. Artificial intelligence has the potential to assist in early diagnosis by leveraging high amounts of data to automatic...
Autores principales: | Alves, Natália, Schuurmans, Megan, Litjens, Geke, Bosma, Joeran S., Hermans, John, Huisman, Henkjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774174/ https://www.ncbi.nlm.nih.gov/pubmed/35053538 http://dx.doi.org/10.3390/cancers14020376 |
Ejemplares similares
-
Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging
por: Schuurmans, Megan, et al.
Publicado: (2022) -
Complexities of deep learning-based undersampled MR image reconstruction
por: Noordman, Constant Richard, et al.
Publicado: (2023) -
Semisupervised Learning with Report-guided Pseudo Labels for Deep
Learning–based Prostate Cancer Detection Using Biparametric
MRI
por: Bosma, Joeran S., et al.
Publicado: (2023) -
Diagnosis of Pancreatic Ductal Adenocarcinoma by Immuno-Positron Emission Tomography
por: González-Gómez, Ruth, et al.
Publicado: (2021) -
Lymph node detection in MR Lymphography: false positive reduction using multi-view convolutional neural networks
por: Debats, Oscar A., et al.
Publicado: (2019)