Cargando…

Mechanical Compression of Human Airway Epithelial Cells Induces Release of Extracellular Vesicles Containing Tenascin C

Aberrant remodeling of the asthmatic airway is not well understood but is thought to be attributable in part to mechanical compression of airway epithelial cells. Here, we examine compression-induced expression and secretion of the extracellular matrix protein tenascin C (TNC) from well-differentiat...

Descripción completa

Detalles Bibliográficos
Autores principales: Mwase, Chimwemwe, Phung, Thien-Khoi N., O’Sullivan, Michael J., Mitchel, Jennifer A., De Marzio, Margherita, Kılıç, Ayşe, Weiss, Scott T., Fredberg, Jeffrey J., Park, Jin-Ah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774246/
https://www.ncbi.nlm.nih.gov/pubmed/35053372
http://dx.doi.org/10.3390/cells11020256
Descripción
Sumario:Aberrant remodeling of the asthmatic airway is not well understood but is thought to be attributable in part to mechanical compression of airway epithelial cells. Here, we examine compression-induced expression and secretion of the extracellular matrix protein tenascin C (TNC) from well-differentiated primary human bronchial epithelial (HBE) cells grown in an air–liquid interface culture. We measured TNC mRNA expression using RT-qPCR and secreted TNC protein using Western blotting and ELISA. To determine intracellular signaling pathways, we used specific inhibitors for either ERK or TGF-β receptor, and to assess the release of extracellular vesicles (EVs) we used a commercially available kit and Western blotting. At baseline, secreted TNC protein was significantly higher in asthmatic compared to non-asthmatic cells. In response to mechanical compression, both TNC mRNA expression and secreted TNC protein was significantly increased in both non-asthmatic and asthmatic cells. TNC production depended on both the ERK and TGF-β receptor pathways. Moreover, mechanically compressed HBE cells released EVs that contain TNC. These data reveal a novel mechanism by which mechanical compression, as is caused by bronchospasm, is sufficient to induce the production of ECM protein in the airway and potentially contribute to airway remodeling.