Cargando…
Fuzzy Clustering Methods to Identify the Epidemiological Situation and Its Changes in European Countries during COVID-19
The main research question concerned the identification of changes in the COVID-19 epidemiological situation using fuzzy clustering methods. This research used cross-sectional time series data obtained from the European Centre for Disease Prevention and Control. The identification of country types i...
Autores principales: | Łuczak, Aleksandra, Kalinowski, Sławomir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774388/ https://www.ncbi.nlm.nih.gov/pubmed/35052040 http://dx.doi.org/10.3390/e24010014 |
Ejemplares similares
-
Assessing the level of the material deprivation of European Union countries
por: Łuczak, Aleksandra, et al.
Publicado: (2020) -
An investigation into epidemiological situations of COVID-19 with fuzzy K-means and K-prototype clustering methods
por: Pasin, Ozge, et al.
Publicado: (2023) -
Candida auris: epidemiological situation, laboratory capacity and preparedness in European Union and European Economic Area countries, 2013 to 2017
por: Kohlenberg, Anke, et al.
Publicado: (2018) -
COVID-19: Situation of European Countries so Far
por: Pillai, Sunitha, et al.
Publicado: (2020) -
Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries
por: Mahmoudi, Mohammad Reza, et al.
Publicado: (2020)