Cargando…
Visual Recognition of Traffic Signs in Natural Scenes Based on Improved RetinaNet
Aiming at recognizing small proportion, blurred and complex traffic sign in natural scenes, a traffic sign detection method based on RetinaNet-NeXt is proposed. First, to ensure the quality of dataset, the data were cleaned and enhanced to denoise. Secondly, a novel backbone network ResNeXt was empl...
Autores principales: | Liu, Shangwang, Cai, Tongbo, Tang, Xiufang, Zhang, Yangyang, Wang, Changgeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774394/ https://www.ncbi.nlm.nih.gov/pubmed/35052138 http://dx.doi.org/10.3390/e24010112 |
Ejemplares similares
-
COVID‐19 CT image segmentation based on improved Res2Net
por: Liu, Shangwang, et al.
Publicado: (2022) -
Wheat Ear Recognition Based on RetinaNet and Transfer Learning
por: Li, Jingbo, et al.
Publicado: (2021) -
COVID-19 diagnosis via chest X-ray image classification based on multiscale class residual attention
por: Liu, Shangwang, et al.
Publicado: (2022) -
Storm-Drain and Manhole Detection Using the RetinaNet Method
por: Santos, Anderson, et al.
Publicado: (2020) -
Detection and identification of tea leaf diseases based on AX-RetinaNet
por: Bao, Wenxia, et al.
Publicado: (2022)